from fastapi import FastAPI
import uvicorn

import pandas as pd
import numpy as np
import requests
from urllib.parse import urlparse, quote
import re
from bs4 import BeautifulSoup
import time
from joblib import Parallel, delayed
from nltk import ngrams

app = FastAPI()


#Endpoints 
#Root endpoints
@app.get("/")
def root():
    return {"API": "Google Address Scrap"}



def normalize_string(string):
    normalized_string = string.lower()
    normalized_string = re.sub(r'[^\w\s]', '', normalized_string)
    
    return normalized_string


def jaccard_similarity(string1, string2,n = 2, normalize=True):
    try:
        if normalize:
           string1,string2= normalize_string(string1),normalize_string(string2)
           
        grams1 = set(ngrams(string1, n))
        grams2 = set(ngrams(string2, n))
        similarity = len(grams1.intersection(grams2)) / len(grams1.union(grams2))
    except:
        similarity=0
        
    if string2=='did not extract address':
        similarity=0
        
    return similarity

def jaccard_sim_split_word_number(string1,string2):
    numbers1 = ' '.join(re.findall(r'\d+', string1))
    words1 = ' '.join(re.findall(r'\b[A-Za-z]+\b', string1))
    
    numbers2 = ' '.join(re.findall(r'\d+', string2))
    words2 = ' '.join(re.findall(r'\b[A-Za-z]+\b', string2))   
    
    number_similarity=jaccard_similarity(numbers1,numbers2)
    words_similarity=jaccard_similarity(words1,words2)
    return (number_similarity+words_similarity)/2

def extract_website_domain(url):
    parsed_url = urlparse(url)
    return parsed_url.netloc


def google_address(address):     

    search_query = quote(address)
    url=f'https://www.google.com/search?q={search_query}'
    response = requests.get(url)
    soup = BeautifulSoup(response.content, "html.parser")
    
    texts_links = []
    for link in soup.find_all("a"):
        t,l=link.get_text(), link.get("href")
        if (l[:11]=='/url?q=http') and (len(t)>20 ):
            texts_links.append((t,l))
    
    text = soup.get_text()
    
    texts_links_des=[]
    for i,t_l in enumerate(texts_links):
        start=text.find(texts_links[i][0][:50])
        try:
            end=text.find(texts_links[i+1][0][:50])
        except:
            end=text.find('Related searches')
            
        description=text[start:end]
        texts_links_des.append((t_l[0],t_l[1],description))
    
    df=pd.DataFrame(texts_links_des,columns=['Title','Link','Description'])
    df['Description']=df['Description'].bfill()
    df['Address Output']=df['Title'].str.extract(r'(.+? \d{5})').fillna("**DID NOT EXTRACT ADDRESS**")
    
    df['Link']=[i[7:i.find('&sa=')] for i in df['Link']]
    df['Website'] = df['Link'].apply(extract_website_domain)
    
    df['Square Footage']=df['Description'].str.extract(r"((\d+) Square Feet|(\d+) sq. ft.|(\d+) sqft|(\d+) Sq. Ft.|(\d+) sq|(\d+(?:,\d+)?) Sq\. Ft\.|(\d+(?:,\d+)?) sq)")[0]
    try:
        df['Square Footage']=df['Square Footage'].replace({',':''},regex=True).str.replace(r'\D', '')
    except:
        pass
    df['Beds']=df['Description'].replace({'-':' ','total':''},regex=True).str.extract(r"(\d+) bed")
    
    
    df['Baths']=df['Description'].replace({'-':' ','total':''},regex=True).str.extract(r"((\d+) bath|(\d+(?:\.\d+)?) bath)")[0]
    df['Baths']=df['Baths'].str.extract(r'([\d.]+)').astype(float)
    
    df['Year Built']=df['Description'].str.extract(r"built in (\d{4})")
    
    df['Match Percent']=[jaccard_sim_split_word_number(address,i)*100 for i in df['Address Output']]
    df['Google Search Result']=[*range(1,df.shape[0]+1)]
   
    df.insert(0,'Address Input',address)
    
    return df

    
def catch_errors(addresses):
    try: 
        return google_address(addresses)
    except:
        return pd.DataFrame({'Address Input':[addresses]})


def process_multiple_address(addresses):
    results=Parallel(n_jobs=32, prefer="threads")(delayed(catch_errors)(i) for i in addresses)
    return results
    
    
@app.get('/Google_Address_Scrap')
async def predict(address_input: str):
    
    address_input_split = address_input.split(';')
    results = process_multiple_address(address_input_split)
    results = pd.concat(results).reset_index(drop=1)
    prediction = results[['Address Input', 'Address Output', 'Match Percent', 'Website', 'Square Footage', 'Beds', 'Baths', 'Year Built',
                       'Link', 'Google Search Result', 'Description']]
    return prediction.to_json()