from fastapi import FastAPI import uvicorn import pandas as pd import numpy as np import requests from urllib.parse import urlparse, quote import re from bs4 import BeautifulSoup import time from joblib import Parallel, delayed from nltk import ngrams from googlesearch import search app = FastAPI() #Endpoints #Root endpoints @app.get("/") def root(): return {"API": "Adress Scrap"} def normalize_string(string): normalized_string = string.lower() normalized_string = re.sub(r'[^\w\s]', '', normalized_string) return normalized_string def jaccard_similarity(string1, string2,n = 2, normalize=True): try: if normalize: string1,string2= normalize_string(string1),normalize_string(string2) grams1 = set(ngrams(string1, n)) grams2 = set(ngrams(string2, n)) similarity = len(grams1.intersection(grams2)) / len(grams1.union(grams2)) except: similarity=0 if string2=='did not extract address': similarity=0 return similarity def jaccard_sim_split_word_number(string1,string2): numbers1 = ' '.join(re.findall(r'\d+', string1)) words1 = ' '.join(re.findall(r'\b[A-Za-z]+\b', string1)) numbers2 = ' '.join(re.findall(r'\d+', string2)) words2 = ' '.join(re.findall(r'\b[A-Za-z]+\b', string2)) number_similarity=jaccard_similarity(numbers1,numbers2) words_similarity=jaccard_similarity(words1,words2) return (number_similarity+words_similarity)/2 def extract_website_domain(url): parsed_url = urlparse(url) return parsed_url.netloc def google_address(address): all_data=[i for i in search(address, ssl_verify=False, advanced=True, num_results=11)] df=pd.DataFrame({'Title':[i.title for i in all_data], 'Link':[i.url for i in all_data], 'Description':[i.description for i in all_data],}) df=df.query("Title==Title") df['Link']=df['Link'].str.replace('/www.','https://www.') # df['Description']=df['Description'].bfill() df['Address Output']=df['Title'].str.extract(r'(.+? \d{5})').fillna("**DID NOT EXTRACT ADDRESS**") df['Link']=[i[7:i.find('&sa=')] for i in df['Link']] df['Website'] = df['Link'].apply(extract_website_domain) df['Square Footage']=df['Description'].str.extract(r"((\d+) Square Feet|(\d+) sq. ft.|(\d+) sqft|(\d+) Sq. Ft.|(\d+) sq|(\d+(?:,\d+)?) Sq\. Ft\.|(\d+(?:,\d+)?) sq)")[0] try: df['Square Footage']=df['Square Footage'].replace({',':''},regex=True).str.replace(r'\D', '') except: pass df['Beds']=df['Description'].replace({'-':' ','total':''},regex=True).str.extract(r"(\d+) bed") df['Baths']=df['Description'].replace({'-':' ','total':''},regex=True).str.extract(r"((\d+) bath|(\d+(?:\.\d+)?) bath)")[0] df['Baths']=df['Baths'].str.extract(r'([\d.]+)').astype(float) df['Year Built']=df['Description'].str.extract(r"built in (\d{4})") df['Match Percent']=[jaccard_sim_split_word_number(address,i)*100 for i in df['Address Output']] df['Google Search Result']=[*range(1,df.shape[0]+1)] # df_final=df[df['Address Output'].notnull()] # df_final=df_final[(df_final['Address Output'].str.contains(str(address_number))) & (df_final['Address Output'].str.contains(str(address_zip)))] df.insert(0,'Address Input',address) return df @app.get('/Address_Scrap') async def predict(address: str): try: results= google_address(address) results=results[['Address Input', 'Address Output','Match Percent','Website','Square Footage', 'Beds', 'Baths', 'Year Built', 'Link','Google Search Result', 'Description' ]] except: results= pd.DataFrame({'Address Input':[address]}) return results.to_json()