File size: 3,671 Bytes
3671cba
ee259c3
3671cba
1fb03fe
 
eac0454
 
1fb03fe
 
 
 
eac0454
3671cba
 
697988f
d687e0e
 
 
 
1fb03fe
eac0454
 
1fb03fe
eac0454
 
1fb03fe
 
 
 
 
eac0454
1fb03fe
 
 
 
eac0454
1fb03fe
eac0454
 
1fb03fe
eac0454
1fb03fe
 
 
 
ee259c3
eac0454
1fb03fe
 
eac0454
1fb03fe
 
eac0454
1fb03fe
 
 
eac0454
1fb03fe
 
 
 
 
 
eac0454
1fb03fe
eac0454
1fb03fe
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
eac0454
1fb03fe
 
eac0454
1fb03fe
 
eac0454
1fb03fe
 
 
eac0454
1fb03fe
 
eac0454
1fb03fe
 
 
 
 
 
eac0454
1fb03fe
 
 
 
eac0454
1fb03fe
825e1ac
ee259c3
1fb03fe
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
from fastapi import FastAPI
import uvicorn

from geopy.extra.rate_limiter import RateLimiter
from geopy.geocoders import Nominatim
import pandas as pd
import numpy as np
import pickle
import rasterio
import h5py
from skimage.morphology import disk 

app = FastAPI()


#Endpoints 
#Root endpoints
@app.get("/")
def root():
    return {"API": "Hail Docker Data"}


def geocode_address(address):

    try:
        address2 = address.replace(' ', '+').replace(',', '%2C')
        df = pd.read_json(
            f'https://geocoding.geo.census.gov/geocoder/locations/onelineaddress?address={address2}&benchmark=2020&format=json')
        results = df.iloc[:1, 0][0][0]['coordinates']
        lat, lon = results['y'], results['x']
    except:
        geolocator = Nominatim(user_agent='GTA Lookup')
        geocode = RateLimiter(geolocator.geocode, min_delay_seconds=2)
        location = geolocator.geocode(address)
        lat, lon = location.latitude, location.longitude
        
    return lat, lon


def get_hail_data(address, start_date,end_date,radius_miles):

    start_date = pd.Timestamp(str(start_date)).strftime('%Y%m%d')
    end_date = pd.Timestamp(str(end_date)).strftime('%Y%m%d')
    date_years = pd.date_range(start=start_date, end=end_date, freq='M')
    years = list(set([d.year for d in date_years]))
    
    
    if len(years)==0:
        years=[pd.Timestamp(start_date).year]
    
    # Geocode Address
    lat, lon= geocode_address(address)
    
    # Convert Lat Lon to row & col on Array
    transform = pickle.load(open('Data/transform_mrms.pkl', 'rb')) 
    row, col = rasterio.transform.rowcol(transform, lon, lat)
    
    files = [
        'Data/2023_hail.h5',
        'Data/2022_hail.h5',
        'Data/2021_hail.h5',
        'Data/2020_hail.h5'
        ]
    
    files_choosen=[i for i in files if any(i for j in years if str(j) in i)]
    
    # Query and Collect H5 Data  
    all_data=[]
    all_dates=[]
    for file in files_choosen:
        with h5py.File(file, 'r') as f:
            # Get Dates from H5
            dates = f['dates'][:]
            date_idx=np.where((dates>=int(start_date)) & (dates<=int(end_date)) )[0]
            
            # Select Data by Date and Radius
            dates=dates[date_idx]
            data = f['hail'][date_idx, row-radius_miles:row +
                              radius_miles+1, col-radius_miles:col+radius_miles+1]
        
            all_data.append(data)
            all_dates.append(dates)
    
    data_all=np.vstack(all_data)
    dates_all=np.concatenate(all_dates)
    
    # Convert to Inches
    data_mat = np.where(data_all < 0, 0, data_all)*0.0393701 
    
    # Get Radius of Data
    disk_mask = np.where(disk(radius_miles)==1,True, False)
    data_mat = np.where(disk_mask, data_mat, -1)
    
    # Find Max of Data
    data_max = np.max(data_mat, axis=(1, 2)).round(3)
    
    # Process to DataFrame
    date_range_days = pd.date_range(start_date,end_date)
    df_data=pd.DataFrame({'Date':dates_all,
                          'Hail_max':data_max})
    df_data['Date']=pd.to_datetime(df_data['Date'],format='%Y%m%d')
    df_data=df_data.set_index('Date')
    
    df_data = df_data.reindex(date_range_days, fill_value=0).reset_index().rename(columns={'index': 'Date'})
    df_data['Date']=df_data['Date'].dt.strftime('%Y-%m-%d')
    return df_data

    
@app.get('/Hail_Docker_Data')
async def predict(address: str, start_date: int,end_date: int, radius_miles:int ):
    
    try:
        results = get_hail_data(address, start_date,end_date, radius_miles)
    except:
        results=pd.DataFrame({'Date':['error'],'df_data':['error']})
        
    return results.to_json()