from fastapi import FastAPI import uvicorn from geopy.extra.rate_limiter import RateLimiter from geopy.geocoders import Nominatim import pandas as pd import numpy as np import pickle import rasterio import h5py from skimage.morphology import disk app = FastAPI() #Endpoints #Root endpoints @app.get("/") def root(): return {"API": "Hail Docker Data"} def geocode_address(address): try: address2 = address.replace(' ', '+').replace(',', '%2C') df = pd.read_json( f'https://geocoding.geo.census.gov/geocoder/locations/onelineaddress?address={address2}&benchmark=2020&format=json') results = df.iloc[:1, 0][0][0]['coordinates'] lat, lon = results['y'], results['x'] except: geolocator = Nominatim(user_agent='GTA Lookup') geocode = RateLimiter(geolocator.geocode, min_delay_seconds=2) location = geolocator.geocode(address) lat, lon = location.latitude, location.longitude return lat, lon def get_hail_data(address, start_date,end_date,radius_miles): start_date = pd.Timestamp(str(start_date)).strftime('%Y%m%d') end_date = pd.Timestamp(str(end_date)).strftime('%Y%m%d') date_years = pd.date_range(start=start_date, end=end_date, freq='M') years = list(set([d.year for d in date_years])) if len(years)==0: years=[pd.Timestamp(start_date).year] # Geocode Address lat, lon= geocode_address(address) # Convert Lat Lon to row & col on Array transform = pickle.load(open('Data/transform_mrms.pkl', 'rb')) row, col = rasterio.transform.rowcol(transform, lon, lat) files = [ 'Data/2023_hail.h5', 'Data/2022_hail.h5', 'Data/2021_hail.h5', 'Data/2020_hail.h5' ] files_choosen=[i for i in files if any(i for j in years if str(j) in i)] # Query and Collect H5 Data all_data=[] all_dates=[] for file in files_choosen: with h5py.File(file, 'r') as f: # Get Dates from H5 dates = f['dates'][:] date_idx=np.where((dates>=int(start_date)) & (dates<=int(end_date)) )[0] # Select Data by Date and Radius dates=dates[date_idx] data = f['hail'][date_idx, row-radius_miles:row + radius_miles+1, col-radius_miles:col+radius_miles+1] all_data.append(data) all_dates.append(dates) data_all=np.vstack(all_data) dates_all=np.concatenate(all_dates) # Convert to Inches data_mat = np.where(data_all < 0, 0, data_all)*0.0393701 # Get Radius of Data disk_mask = np.where(disk(radius_miles)==1,True, False) data_mat = np.where(disk_mask, data_mat, -1) # Find Max of Data data_max = np.max(data_mat, axis=(1, 2)).round(3) # Process to DataFrame date_range_days = pd.date_range(start_date,end_date) df_data=pd.DataFrame({'Date':dates_all, 'Hail_max':data_max}) df_data['Date']=pd.to_datetime(df_data['Date'],format='%Y%m%d') df_data=df_data.set_index('Date') df_data = df_data.reindex(date_range_days, fill_value=0).reset_index().rename(columns={'index': 'Date'}) df_data['Date']=df_data['Date'].dt.strftime('%Y-%m-%d') return df_data @app.get('/Hail_Docker_Data') async def predict(address: str, start_date: int,end_date: int, radius_miles:int ): try: results = get_hail_data(address, start_date,end_date, radius_miles) except: results=pd.DataFrame({'Date':['error'],'df_data':['error']}) return results.to_json()