mattritchey commited on
Commit
fc8f82f
·
1 Parent(s): 14f49e4

Delete app.py.py

Browse files
Files changed (1) hide show
  1. app.py.py +0 -257
app.py.py DELETED
@@ -1,257 +0,0 @@
1
- # -*- coding: utf-8 -*-
2
- """
3
- Created on Fri Oct 14 10:35:25 2022
4
-
5
- @author: mritchey
6
- """
7
- # streamlit run "C:\Users\mritchey\.spyder-py3\Python Scripts\streamlit projects\hrrr\windtrial2_streamlit_hrrr 2.py"
8
- import base64
9
- import datetime
10
- import itertools
11
-
12
- import branca.colormap as cm
13
- import folium
14
- import numpy as np
15
- import pandas as pd
16
- import plotly.express as px
17
- import rasterio
18
- import rioxarray
19
- import s3fs
20
-
21
- import streamlit as st
22
- import xarray as xr
23
- from geogif import gif
24
- from geopy.extra.rate_limiter import RateLimiter
25
- from geopy.geocoders import Nominatim
26
- from joblib import Parallel, delayed
27
- from matplotlib import colors as colors
28
- from pyproj import CRS, Transformer
29
- from streamlit_folium import st_folium
30
-
31
-
32
- @st.cache
33
- def convert_df(df):
34
- # IMPORTANT: Cache the conversion to prevent computation on every rerun
35
- return df.to_csv(index=0).encode('utf-8')
36
-
37
- @st.cache
38
- def geocode(address):
39
- try:
40
- address2 = address.replace(' ', '+').replace(',', '%2C')
41
- df = pd.read_json(
42
- f'https://geocoding.geo.census.gov/geocoder/locations/onelineaddress?address={address2}&benchmark=2020&format=json')
43
- results = df.iloc[:1, 0][0][0]['coordinates']
44
- lat, lon = results['y'], results['x']
45
- except:
46
- geolocator = Nominatim(user_agent="GTA Lookup")
47
- geocode = RateLimiter(geolocator.geocode, min_delay_seconds=1)
48
- location = geolocator.geocode(address)
49
- lat, lon = location.latitude, location.longitude
50
- return lat, lon
51
-
52
- @st.cache
53
- def get_data_date_time(date_time, lat, lon):
54
- date, time = date_time
55
- path = f"hrrrzarr/sfc/{date}/{date}_{time[-2:]}z_{analysis_forecast}.zarr/{vertical_level}/{variable}"
56
- try:
57
- ds = xr.open_mfdataset([lookup(path), lookup(f"{path}/{vertical_level}")],
58
- engine="zarr")
59
- result = ds.sel(projection_x_coordinate=lon, projection_y_coordinate=lat, method="nearest")[
60
- variable].values*2.23694
61
- except:
62
- result = None
63
- date2 = pd.to_datetime(str(date)+str(time), format='%Y%m%d%H')
64
- df = pd.DataFrame({'Date': date2, 'MPH': result}, index=[0])
65
- return df
66
-
67
- def mapvalue2color(value, cmap):
68
-
69
- if np.isnan(value):
70
- return (1, 0, 0, 0)
71
- else:
72
- return colors.to_rgba(cmap(value), 0.7)
73
-
74
-
75
- def lookup(path):
76
- return s3fs.S3Map(path, s3=s3)
77
-
78
-
79
-
80
- s3 = s3fs.S3FileSystem(anon=True)
81
-
82
- st.set_page_config(layout="wide")
83
- col1, col2 = st.columns((2))
84
-
85
- address = st.sidebar.text_input(
86
- "Address", "123 Main Street, Columbus, OH 43215")
87
- d = st.sidebar.date_input(
88
- "Date", pd.Timestamp(2022, 9, 28)).strftime('%Y%m%d')
89
-
90
- time = st.sidebar.selectbox('Time:', ('12 AM', '6 AM', '12 PM', '6 PM',))
91
- type_wind = st.sidebar.selectbox('Type:', ('Gust', 'Wind'))
92
- analysis_forecast1 = st.sidebar.radio(
93
- 'Analysis or Forecast:', ('Analysis', 'Forecast'))
94
- entire_day = st.sidebar.radio(
95
- 'Graph Entire Day/Forecast (Takes a Bit):', ('No', 'Yes'))
96
- animate_forecast = st.sidebar.radio(
97
- 'Animate Forecast:', ('No', 'Yes'))
98
-
99
-
100
- if analysis_forecast1 == 'Analysis':
101
- analysis_forecast = 'anl'
102
- else:
103
- analysis_forecast = 'fcst'
104
-
105
-
106
- if time[-2:] == 'PM' and int(time[:2].strip()) < 12:
107
- t = datetime.time(int(time[:2].strip())+12, 00).strftime('%H')+'00'
108
- elif time[-2:] == 'AM' and int(time[:2].strip()) == 12:
109
- t = '0000'
110
- else:
111
- t = datetime.time(int(time[:2].strip()), 00).strftime('%H')+'00'
112
-
113
- year, month, day = d[:4], d[4:6], d[6:8]
114
-
115
- if type_wind == 'Gust':
116
- variable = type_wind.upper()
117
- vertical_level = 'surface'
118
- else:
119
- vertical_level = '10m_above_ground'
120
- if analysis_forecast == 'anl':
121
- variable = 'WIND_max_fcst'
122
- else:
123
- variable = 'WIND_1hr_max_fcst'
124
-
125
- path = f"hrrrzarr/sfc/{d}/{d}_{t[:2]}z_{analysis_forecast}.zarr/{vertical_level}/{variable}"
126
- ds = xr.open_mfdataset([lookup(path), lookup(f"{path}/{vertical_level}")],
127
- engine="zarr")
128
-
129
- lat, lon = geocode(address)
130
-
131
- ds = ds.rename(projection_x_coordinate="x", projection_y_coordinate="y")
132
- crs = CRS.from_cf({"grid_mapping_name": "lambert_conformal_conic",
133
- "longitude_of_central_meridian": -97.5,
134
- "latitude_of_projection_origin": 38.5,
135
- "standard_parallel": 38.5})
136
- ds = ds.rio.write_crs(crs, inplace=True)
137
-
138
- ds[variable] = ds[variable].astype("float64")
139
- projected = ds.rio.reproject("EPSG:4326")
140
-
141
- if analysis_forecast == 'fcst':
142
- projected_org = projected
143
- projected = projected.sel(time=projected.time.values[0])
144
- else:
145
- pass
146
-
147
- wind_mph = projected.sel(x=lon, y=lat, method="nearest")[
148
- variable].values*2.23694
149
-
150
-
151
- affine = projected.rio.transform()
152
-
153
- rows, columns = rasterio.transform.rowcol(affine, lon, lat)
154
-
155
- size = 40
156
-
157
- projected2 = projected[variable][rows-size:rows+size, columns-size:columns+size]
158
- img = projected2.values*2.23694
159
-
160
- boundary = projected2.rio.bounds()
161
- left, bottom, right, top = boundary
162
-
163
- img[img < 0.0] = np.nan
164
-
165
- clat = (bottom + top)/2
166
- clon = (left + right)/2
167
-
168
- vmin = np.floor(np.nanmin(img))
169
- vmax = np.ceil(np.nanmax(img))
170
-
171
- colormap = cm.LinearColormap(
172
- colors=['blue', 'lightblue', 'red'], vmin=vmin, vmax=vmax)
173
-
174
- m = folium.Map(location=[lat, lon], zoom_start=9, height=500)
175
-
176
- folium.Marker(
177
- location=[lat, lon],
178
- popup=f"{wind_mph.round(2)} MPH").add_to(m)
179
-
180
- folium.raster_layers.ImageOverlay(
181
- image=img,
182
- name='Wind Speed Map',
183
- opacity=.8,
184
- bounds=[[bottom, left], [top, right]],
185
- colormap=lambda value: mapvalue2color(value, colormap)
186
- ).add_to(m)
187
-
188
-
189
- folium.LayerControl().add_to(m)
190
- colormap.caption = 'Wind Speed: MPH'
191
- m.add_child(colormap)
192
-
193
- with col1:
194
- st.title('HRRR Model')
195
- st.write(f"{type_wind.title()} Speed: {wind_mph.round(2)} MPH at {time} UTC")
196
- st_folium(m, height=500)
197
-
198
-
199
- proj = Transformer.from_crs(4326, crs, always_xy=True)
200
- lon2, lat2 = proj.transform(lon, lat)
201
-
202
-
203
- if entire_day == 'Yes':
204
- if analysis_forecast == 'anl':
205
- times = [f'0{str(i)}'[-2:] for i in range(0, 24)]
206
- dates_times = list(itertools.product([d], times))
207
-
208
- results = Parallel(n_jobs=-1, prefer="threads")(
209
- delayed(get_data_date_time)(i, lat2, lon2) for i in dates_times)
210
-
211
- df_all = pd.concat(results)
212
- df_all['MPH'] = df_all['MPH'].round(2)
213
-
214
- else:
215
- result = ds[variable].sel(x=lon2, y=lat2, method="nearest")*2.23694
216
- df_all = result.to_dataframe()[variable].reset_index()
217
- df_all.columns = ['Date', 'MPH']
218
- df_all['MPH'] = df_all['MPH'].round(2)
219
- if animate_forecast == 'Yes':
220
- # Not working
221
- gif(projected_org[variable], to='ds.gif',
222
- date_format='%m-%d-%Y: %I%p', cmap="RdBu_r", vmax=35)
223
- st.download_button(
224
- label="Download Gif",
225
- data='ds.gif',
226
- file_name='ds.gif',
227
- )
228
- file_ = open("ds.gif", "rb")
229
- contents = file_.read()
230
- data_url = base64.b64encode(contents).decode("utf-8")
231
- file_.close()
232
-
233
- st.markdown(
234
- f'<img src="data:image/gif;base64,{data_url}" alt="ds gif" width="1200">',
235
- unsafe_allow_html=True,
236
- )
237
-
238
- fig = px.line(df_all, x="Date", y="MPH")
239
- with col2:
240
- st.title(f'{analysis_forecast1}')
241
- st.plotly_chart(fig)
242
-
243
- csv = convert_df(df_all)
244
-
245
- st.download_button(
246
- label="Download data as CSV",
247
- data=csv,
248
- file_name='data.csv',
249
- mime='text/csv')
250
-
251
- else:
252
- pass
253
-
254
- st.markdown(""" <style>
255
- #MainMenu {visibility: hidden;}
256
- footer {visibility: hidden;}
257
- </style> """, unsafe_allow_html=True)