File size: 4,064 Bytes
3671cba ee259c3 3671cba eac0454 1fb03fe c4f7382 2fb9f93 267df2c 3671cba 697988f c4f7382 d687e0e 1fb03fe 2fb9f93 eac0454 2fb9f93 eac0454 2fb9f93 eac0454 aa9579e 9bd3977 aa9579e 2fb9f93 aa9579e 1fb03fe aa9579e cb86663 c4f7382 aa9579e c4f7382 1fb03fe 2fb9f93 c4f7382 1fb03fe 2fb9f93 c4f7382 1fb03fe c4f7382 aa9579e 9db1d02 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 |
from fastapi import FastAPI
import uvicorn
import pandas as pd
import numpy as np
import pickle
import rasterio
import h5py
from skimage.morphology import disk
from geopy.extra.rate_limiter import RateLimiter
from geopy.geocoders import Nominatim
app = FastAPI()
#Endpoints
#Root endpoints
@app.get("/")
def root():
return {"API": "Hail Docker Data"}
def geocode_address(address):
try:
address2 = address.replace(' ', '+').replace(',', '%2C')
df = pd.read_json(
f'https://geocoding.geo.census.gov/geocoder/locations/onelineaddress?address={address2}&benchmark=2020&format=json')
results = df.iloc[:1, 0][0][0]['coordinates']
lat, lon = results['y'], results['x']
except:
geolocator = Nominatim(user_agent='GTA Lookup')
geocode = RateLimiter(geolocator.geocode, min_delay_seconds=2)
location = geolocator.geocode(address)
lat, lon = location.latitude, location.longitude
return lat, lon
def get_hail_data(address, start_date, end_date, radius_miles, get_max):
resolution=1 # mrms 1 and hrrr is 3
radius = int(np.ceil(radius_miles*1.6/resolution))
start_date = pd.Timestamp(str(start_date)).strftime('%Y%m%d')
end_date = pd.Timestamp(str(end_date)).strftime('%Y%m%d')
date_years = pd.date_range(start=start_date, end=end_date, freq='M')
date_range_days = pd.date_range(start_date, end_date)
years = list(set([d.year for d in date_years]))
if len(years) == 0:
years = [pd.Timestamp(start_date).year]
# Geocode Address
lat, lon= geocode_address(address)
# Convert Lat Lon to row & col on Array
transform = pickle.load(open('Data/transform_mrms.pkl', 'rb'))
row, col = rasterio.transform.rowcol(transform, lon, lat)
files = [
'Data/2023_hail.h5',
'Data/2022_hail.h5',
'Data/2021_hail.h5',
'Data/2020_hail.h5'
]
files_choosen = [i for i in files if any(i for j in years if str(j) in i)]
# Query and Collect H5 Data
all_data = []
all_dates = []
for file in files_choosen:
with h5py.File(file, 'r') as f:
# Get Dates from H5
dates = f['dates'][:]
date_idx = np.where((dates >= int(start_date))
& (dates <= int(end_date)))[0]
# Select Data by Date and Radius
dates = dates[date_idx]
data = f['hail'][date_idx, row-radius_miles:row +
radius_miles+1, col-radius_miles:col+radius_miles+1]
all_data.append(data)
all_dates.append(dates)
data_all = np.vstack(all_data)
dates_all = np.concatenate(all_dates)
# Convert to Inches
data_mat = np.where(data_all < 0, 0, data_all)*0.0393701
# Get Radius of Data
disk_mask = np.where(disk(radius_miles) == 1, True, False)
data_mat = np.where(disk_mask, data_mat, -1).round(3)
# Process to DataFrame
# Find Max of Data
if get_max == True:
data_max = np.max(data_mat, axis=(1, 2))
df_data = pd.DataFrame({'Date': dates_all,
'Hail_max': data_max})
# Get all Data
else:
data_all = list(data_mat)
df_data = pd.DataFrame({'Date': dates_all,
'Hail_all': data_all})
df_data['Date'] = pd.to_datetime(df_data['Date'], format='%Y%m%d')
df_data = df_data.set_index('Date')
df_data = df_data.reindex(date_range_days, fill_value=0).reset_index().rename(
columns={'index': 'Date'})
df_data['Date'] = df_data['Date'].dt.strftime('%Y-%m-%d')
return df_data
@app.get('/Hail_Docker_Data')
async def predict(address: str, start_date: str, end_date: str, radius_miles: int, get_max: bool):
try:
results = get_hail_data(address, start_date,
end_date, radius_miles, get_max)
except:
results = pd.DataFrame({'Date': ['error'], 'Hail_max': ['error']})
return results.to_json()
|