Spaces:
Running
Running
File size: 6,412 Bytes
a58de21 d8d98f2 a58de21 8f4b378 988c03c a58de21 88c2fcc a58de21 988c03c 88c2fcc 988c03c a58de21 c9a464e ee232a5 a58de21 c9a464e a58de21 88c2fcc a58de21 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 |
# -*- coding: utf-8 -*-
"""
Created on Thu Jun 8 03:39:02 2023
@author: mritchey
"""
import pandas as pd
import numpy as np
import streamlit as st
from geopy.extra.rate_limiter import RateLimiter
from geopy.geocoders import Nominatim
import folium
from streamlit_folium import st_folium
import geopandas as gpd
from vincenty import vincenty
st.set_page_config(layout="wide")
@st.cache_resource
def get_perimeters():
gdf_perimeters = gpd.read_file(
'https://opendata.arcgis.com/api/v3/datasets/d1c32af3212341869b3c810f1a215824_0/downloads/data?format=shp&spatialRefId=4326&where=1%3D1') # .to_crs(epsg=epsg_input)
gdf_perimeters = gdf_perimeters[['OBJECTID', 'poly_Incid', 'attr_Fir_7', 'poly_Creat',
'poly_DateC', 'poly_Polyg', 'poly_Acres', 'attr_Estim', 'geometry']].copy()
gdf_perimeters.columns = ['OBJECTID', 'Incident', 'DiscoveryDate', 'poly_Creat',
'LastUpdate', 'poly_Polyg', 'Size_acres', 'CurrentEstCost', 'geometry']
gdf_perimeters['Lat_centroid'] = gdf_perimeters.centroid.y
gdf_perimeters['Lon_centroid'] = gdf_perimeters.centroid.x
gdf_perimeters['DiscoveryDate'] = pd.to_datetime(
gdf_perimeters['DiscoveryDate'])
return gdf_perimeters
def map_perimeters(_gdf_data, address):
geojson_data = _gdf_data[['OBJECTID', 'Incident', 'DiscoveryDate',
'Miles to Fire Centroid', 'geometry']].to_json()
m = folium.Map(location=[lat, lon],
zoom_start=8,
height=500)
folium.Marker(
location=[lat, lon],
tooltip=f'Address: {address}',
).add_to(m)
folium.GeoJson(geojson_data,
tooltip=folium.GeoJsonTooltip(fields=["Incident",
"DiscoveryDate",
'Miles to Fire Centroid']),
).add_to(m)
return m
def distance(x):
left_coords = (x[0], x[1])
right_coords = (x[2], x[3])
return vincenty(left_coords, right_coords, miles=True)
def geocode(address):
try:
address2 = address.replace(' ', '+').replace(',', '%2C')
df = pd.read_json(
f'https://geocoding.geo.census.gov/geocoder/locations/onelineaddress?address={address2}&benchmark=2020&format=json')
results = df.iloc[:1, 0][0][0]['coordinates']
lat, lon = results['y'], results['x']
except:
geolocator = Nominatim(user_agent="GTA Lookup")
geocode = RateLimiter(geolocator.geocode, min_delay_seconds=1)
location = geolocator.geocode(address)
lat, lon = location.latitude, location.longitude
return lat, lon
def extract_vertices_1(multipolygon):
vertices = []
for polygon in multipolygon.geoms: # Access the individual polygons
x, y = polygon.exterior.xy # Get exterior coordinates
vertices.extend(zip(x, y)) # Combine x and y coordinates
return vertices
def extract_vertices_final(gdf):
all_data = []
for idx, geom in enumerate(gdf.geometry):
if geom.geom_type == 'MultiPolygon':
vertices = extract_vertices_1(geom)
else:
x, y = geom.exterior.xy # Handle single polygons
vertices = list(zip(x, y))
df = pd.DataFrame(vertices, columns=['Lon', 'Lat'])
df['index_gdf'] = idx # Add index from GeoDataFrame
all_data.append(df[['Lat','Lon','index_gdf']])
return pd.concat(all_data).query('Lat==Lat').reset_index(drop=1).drop(columns='index_gdf')
#Side Bar
address = st.sidebar.text_input(
"Address", "407 N Macneil St, San Fernando, CA 91340")
date = st.sidebar.date_input("Date", pd.Timestamp.today(), key='date')
number_days_range = st.sidebar.selectbox(
'Within Day Range:', (60, 5, 10,30, 90, 180))
# refresh = st.sidebar.radio(
# 'Refresh Data (as of 6/7/23): Will Take Time ', (False, True))
miles_range = st.sidebar.selectbox(
'Find Fires within Range (Miles):', (None, 50, 100, 250, 500))
size = st.sidebar.radio(
'Greater than 100 Acres', ("Yes", "No"))
#Get Data
gdf = get_perimeters()
# Geocode Addreses
lat, lon = geocode(address)
#Filter Data
start_date, end_date = date - \
pd.Timedelta(days=number_days_range), date + \
pd.Timedelta(days=number_days_range+1)
start_date_str, end_date_str = start_date.strftime(
'%Y-%m-%d'), end_date.strftime('%Y-%m-%d')
gdf_cut = gdf.query(f"'{start_date_str}'<=DiscoveryDate<='{end_date_str}'")
gdf_cut['DiscoveryDate'] = gdf_cut['DiscoveryDate'].dt.strftime('%Y-%m-%d')
#Distance to Fire
gdf_cut["Lat_address"] = lat
gdf_cut["Lon_address"] = lon
gdf_cut['Miles to Fire Centroid'] = [
distance(i) for i in gdf_cut[gdf_cut.columns[-4:]].values]
gdf_cut['Miles to Fire Centroid'] = gdf_cut['Miles to Fire Centroid'].round(2)
gdf_cut['Size_acres']=gdf_cut['Size_acres'].round(1)
if miles_range is not None:
gdf_cut = gdf_cut.query(f"`Miles to Fire Centroid`<={miles_range}")
if size == 'Yes':
gdf_cut = gdf_cut.query("Size_acres>100")
gdf_cut = gdf_cut.sort_values('Miles to Fire Centroid').drop_duplicates().reset_index(drop=1)
# gdf_cut.index = gdf_cut.index+1
#Map Data
m = map_perimeters(gdf_cut, address)
#Incident Edge
indicents = list(gdf_cut['Incident'].values)
incident_edge = st.sidebar.selectbox(
'Find Distance to Closest Edge:', indicents)
vertices = extract_vertices_final(gdf_cut[gdf_cut['Incident']==incident_edge])
vertices["Lat_address"] = lat
vertices["Lon_address"] = lon
vertices['Distance'] = [
distance(i) for i in vertices.values]
closest_edge = vertices[vertices['Distance']
== vertices['Distance'].min()]
try:
lon_point, lat_point = closest_edge[['Lon', 'Lat']].values[0]
distance_edge = closest_edge['Distance'].round(2).values[0]
folium.PolyLine([[lat, lon],
[lat_point, lon_point]],
color='black',
tooltip=f'Distance: {distance_edge} Miles'
).add_to(m)
except:
pass
#Display
col1, col2 = st.columns((2, 3))
with col1:
st.header('Fire Perimeters')
st_folium(m, height=600)
with col2:
st.header('Fires')
gdf_cut2 = gdf_cut[['Incident', 'DiscoveryDate', 'Size_acres','Miles to Fire Centroid']].drop_duplicates().reset_index(drop=1)
gdf_cut2.index = gdf_cut2.index+1
gdf_cut2 |