apcp_hrrr_api / main.py
mattritchey's picture
Update main.py
bccf49f verified
raw
history blame
4 kB
from fastapi import FastAPI
import uvicorn
import pandas as pd
import numpy as np
import pickle
import rasterio
import h5py
from skimage.morphology import disk
from geopy.extra.rate_limiter import RateLimiter
from geopy.geocoders import Nominatim
app = FastAPI()
#Endpoints
#Root endpoints
@app.get("/")
def root():
return {"API": "ACPC HRRR"}
def geocode_address(address):
try:
address2 = address.replace(' ', '+').replace(',', '%2C')
df = pd.read_json(
f'https://geocoding.geo.census.gov/geocoder/locations/onelineaddress?address={address2}&benchmark=2020&format=json')
results = df.iloc[:1, 0][0][0]['coordinates']
lat, lon = results['y'], results['x']
except:
geolocator = Nominatim(user_agent='GTA Lookup')
geocode = RateLimiter(geolocator.geocode, min_delay_seconds=2)
location = geolocator.geocode(address)
lat, lon = location.latitude, location.longitude
return lat, lon
def get_hail_data(address, start_date, end_date, radius_miles, get_max):
start_date = pd.Timestamp(str(start_date)).strftime('%Y%m%d')
end_date = pd.Timestamp(str(end_date)).strftime('%Y%m%d')
date_years = pd.date_range(start=start_date, end=end_date, freq='M')
date_range_days = pd.date_range(start_date, end_date)
years = list(set([d.year for d in date_years]))
if len(years) == 0:
years = [pd.Timestamp(start_date).year]
# Geocode Address
lat, lon= geocode_address(address)
# Convert Lat Lon to row & col on Array
transform = pickle.load(open('Data/hrrr_crs.pkl', 'rb'))
row, col = rasterio.transform.rowcol(transform['affine'], lon, lat)
files = ["Data/APCP_2024_hrrr_v2.h5",
"Data/APCP_2020_hrrr_v3.h5",
"Data/APCP_2021_hrrr_3.h5",
"Data/APCP_2022_hrrr_v2.h5",
"Data/APCP_2023_hrrr_v2c.h5"]
files_choosen = [i for i in files if any(i for j in years if str(j) in i)]
# Query and Collect H5 Data
all_data = []
all_dates = []
for file in files_choosen:
with h5py.File(file, 'r') as f:
# Get Dates from H5
dates = f['dates'][:]
date_idx = np.where((dates >= int(start_date))
& (dates <= int(end_date)))[0]
# Select Data by Date and Radius
dates = dates[date_idx]
data = f['hail'][date_idx, row-radius_miles:row +
radius_miles+1, col-radius_miles:col+radius_miles+1]
all_data.append(data)
all_dates.append(dates)
data_all = np.vstack(all_data)
dates_all = np.concatenate(all_dates)
# Convert to Inches
data_mat = np.where(data_all < 0, 0, data_all)*0.0393701
# Get Radius of Data
disk_mask = np.where(disk(radius_miles) == 1, True, False)
data_mat = np.where(disk_mask, data_mat, -1).round(3)
# Process to DataFrame
# Find Max of Data
if get_max == True:
data_max = np.max(data_mat, axis=(1, 2))
df_data = pd.DataFrame({'Date': dates_all,
'Hail_max': data_max})
# Get all Data
else:
data_all = list(data_mat)
df_data = pd.DataFrame({'Date': dates_all,
'Hail_all': data_all})
df_data['Date'] = pd.to_datetime(df_data['Date'], format='%Y%m%d')
df_data = df_data.set_index('Date')
df_data = df_data.reindex(date_range_days, fill_value=0).reset_index().rename(
columns={'index': 'Date'})
df_data['Date'] = df_data['Date'].dt.strftime('%Y-%m-%d')
return df_data
@app.get('/Hail_Docker_Data')
async def predict(address: str, start_date: str, end_date: str, radius_miles: int, get_max: bool):
try:
results = get_hail_data(address, start_date,
end_date, radius_miles, get_max)
except:
results = pd.DataFrame({'Date': ['error'], 'Hail_max': ['error']})
return results.to_json()