Spaces:
Running
Running
File size: 4,379 Bytes
b9bd536 ab8fc6e b9bd536 b9965d6 b9bd536 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 |
import datetime
import glob
import os
import branca.colormap as cm
import folium
import numpy as np
import pandas as pd
import plotly.express as px
import streamlit as st
from geopy.extra.rate_limiter import RateLimiter
from geopy.geocoders import Nominatim
from matplotlib import colors as colors
import rioxarray
import xarray as xr
import cdsapi
import os
def geocode(address):
try:
address2 = address.replace(' ', '+').replace(',', '%2C')
df = pd.read_json(
f'https://geocoding.geo.census.gov/geocoder/locations/onelineaddress?address={address2}&benchmark=2020&format=json')
results = df.iloc[:1, 0][0][0]['coordinates']
lat, lon = results['y'], results['x']
except:
geolocator = Nominatim(user_agent="GTA Lookup")
geocode = RateLimiter(geolocator.geocode, min_delay_seconds=1)
location = geolocator.geocode(address)
lat, lon = location.latitude, location.longitude
return lat, lon
def get_weather_data(lat, lon, start_date, end_date):
url = f'https://archive-api.open-meteo.com/v1/archive?latitude={lat}&longitude={lon}&start_date={start_date}&end_date={end_date}&hourly=temperature_2m,precipitation,windspeed_10m,windgusts_10m&models=best_match&temperature_unit=fahrenheit&windspeed_unit=mph&precipitation_unit=inch'
df = pd.read_json(url).reset_index()
data = pd.DataFrame({c['index']: c['hourly'] for r, c in df.iterrows()})
data['time'] = pd.to_datetime(data['time'])
data['date'] = pd.to_datetime(data['time'].dt.date)
data = data.query("temperature_2m==temperature_2m")
data_agg = data.groupby(['date']).agg({'temperature_2m': ['min', 'mean', 'max'],
'precipitation': ['sum'],
'windspeed_10m': ['min', 'mean', 'max'],
'windgusts_10m': ['min', 'mean', 'max']
})
data_agg.columns = data_agg.columns.to_series().str.join('_')
data_agg = data_agg.query("temperature_2m_min==temperature_2m_min")
return data.drop(columns=['date']), data_agg
@st.cache
def convert_df(df):
return df.to_csv(index=0).encode('utf-8')
st.set_page_config(layout="wide")
col1, col2 = st.columns((2))
address = st.sidebar.text_input(
"Address", "1000 Main St, Cincinnati, OH 45202")
start_date = st.sidebar.date_input("Start Date", pd.Timestamp(2022, 9, 28))
end_date = st.sidebar.date_input("End Date", pd.Timestamp(2022, 9, 30))
type_var = st.sidebar.selectbox(
'Type:', ('Gust', 'Wind', 'Temp', 'Precipitation'))
hourly_daily = st.sidebar.radio('Aggregate Data', ('Hourly', 'Daily'))
start_date = start_date.strftime("%Y-%m-%d")
end_date = end_date.strftime("%Y-%m-%d")
lat, lon = geocode(address)
df_all, df_all_agg = get_weather_data(lat, lon, start_date, end_date)
# Keys
var_key = {'Gust': 'i10fg', 'Wind': 'wind10',
'Temp': 't2m', 'Precipitation': 'tp'}
variable = var_key[type_var]
unit_key = {'Gust': 'MPH', 'Wind': 'MPH',
'Temp': 'F', 'Precipitation': 'In.'}
unit = unit_key[type_var]
cols_key = {'Gust': ['windgusts_10m'], 'Wind': ['windspeed_10m'], 'Temp': ['temperature_2m'],
'Precipitation': ['precipitation']}
cols_key_agg = {'Gust': ['windgusts_10m_min', 'windgusts_10m_mean',
'windgusts_10m_max'],
'Wind': ['windspeed_10m_min', 'windspeed_10m_mean',
'windspeed_10m_max'],
'Temp': ['temperature_2m_min', 'temperature_2m_mean', 'temperature_2m_max'],
'Precipitation': ['precipitation_sum']}
if hourly_daily == 'Hourly':
cols = cols_key[type_var]
else:
cols = cols_key_agg[type_var]
if hourly_daily == 'Hourly':
fig = px.line(df_all, x="time", y=cols[0])
df_downloald = df_all
else:
fig = px.line(df_all_agg.reset_index(), x="date", y=cols[0])
df_downloald = df_all_agg.reset_index()
with col1:
st.title('Weather Data')
st.plotly_chart(fig)
csv = convert_df(df_downloald)
st.download_button(
label="Download data as CSV",
data=csv,
file_name=f'{start_date}.csv',
mime='text/csv')
with col2:
st.title('')
st.markdown(""" <style>
#MainMenu {visibility: hidden;}
footer {visibility: hidden;}
</style> """, unsafe_allow_html=True)
|