File size: 6,569 Bytes
852419d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
89b5097
 
 
 
 
 
 
 
 
852419d
 
 
89b5097
 
 
 
 
 
 
 
 
852419d
89b5097
b2fb90e
852419d
 
89b5097
852419d
 
a5d8e34
852419d
 
 
 
 
1d17b95
852419d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b2fb90e
852419d
 
 
 
 
 
 
cfb1aab
852419d
 
 
 
 
 
8d3cf6b
68445d0
852419d
 
 
 
 
 
 
 
b2fb90e
852419d
 
 
 
 
ca58898
 
9694ebc
 
 
 
 
 
 
 
 
 
0c5ae68
852419d
 
 
 
 
 
 
68445d0
aa31ea5
 
7863e17
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
# -*- coding: utf-8 -*-
"""
Created on Thu Jun  8 03:39:02 2023

@author: mritchey
"""
import pandas as pd
import numpy as np
import streamlit as st
from geopy.extra.rate_limiter import RateLimiter
from geopy.geocoders import Nominatim
import folium
from streamlit_folium import st_folium
import geopandas as gpd
from vincenty import vincenty

st.set_page_config(layout="wide")

@st.cache_resource
def get_perimeters(refresh=False):
    if refresh:
        gdf_perimeters = gpd.read_file(
            'https://opendata.arcgis.com/api/v3/datasets/5e72b1699bf74eefb3f3aff6f4ba5511_0/downloads/data?format=shp&spatialRefId=4326&where=1%3D1')  # .to_crs(epsg=epsg_input)
        gdf_perimeters = gdf_perimeters[['OBJECTID', 'poly_Incid', 'attr_Fir_7', 'poly_Creat',
                                         'poly_DateC', 'poly_Polyg', 'poly_Acres', 'attr_Estim', 'geometry']].copy()
        gdf_perimeters.columns = ['OBJECTID', 'Incident', 'DiscoveryDate', 'poly_Creat',
                                  'LastUpdate', 'poly_Polyg', 'Size_acres', 'CurrentEstCost', 'geometry']
        gdf_perimeters['Lat_centroid'] = gdf_perimeters.centroid.y
        gdf_perimeters['Lon_centroid'] = gdf_perimeters.centroid.x
        gdf_perimeters['DiscoveryDate'] = pd.to_datetime(
            gdf_perimeters['DiscoveryDate'])

    else:
        gdf_perimeters = gpd.read_parquet(
            "wildfire_perimeters.parquet").query("geometry==geometry")
    return gdf_perimeters


def map_perimeters(_gdf_data, address):
    geojson_data = _gdf_data[['OBJECTID', 'Incident', 'DiscoveryDate',
                              'Miles to Fire Centroid', 'geometry']].to_json()

    m = folium.Map(location=[lat, lon],

                   zoom_start=6,
                   height=500)
    folium.Marker(
        location=[lat, lon],
        tooltip=f'Address: {address}',
    ).add_to(m)

    folium.GeoJson(geojson_data,
                   tooltip=folium.GeoJsonTooltip(fields=["Incident",
                                                         "DiscoveryDate",
                                                         'Miles to Fire Centroid']),
                   ).add_to(m)
    return m

def distance(x):
    left_coords = (x[0], x[1])
    right_coords = (x[2], x[3])
    return vincenty(left_coords, right_coords, miles=True)

def geocode(address):
    try:
        address2 = address.replace(' ', '+').replace(',', '%2C')
        df = pd.read_json(
            f'https://geocoding.geo.census.gov/geocoder/locations/onelineaddress?address={address2}&benchmark=2020&format=json')
        results = df.iloc[:1, 0][0][0]['coordinates']
        lat, lon = results['y'], results['x']
    except:
        geolocator = Nominatim(user_agent="GTA Lookup")
        geocode = RateLimiter(geolocator.geocode, min_delay_seconds=1)
        location = geolocator.geocode(address)
        lat, lon = location.latitude, location.longitude
    return lat, lon
    
def extract_vertices_1(multipolygon):
    vertices = []
    for polygon in multipolygon.geoms:  # Access the individual polygons
        x, y = polygon.exterior.xy  # Get exterior coordinates
        vertices.extend(zip(x, y))  # Combine x and y coordinates
    return vertices



def extract_vertices(gdf):
    all_data = []
    for idx, geom in enumerate(gdf.geometry):
        if geom.geom_type == 'MultiPolygon':
            vertices = extract_vertices_1(geom)
        else:
            x, y = geom.exterior.xy  # Handle single polygons
            vertices = list(zip(x, y))

        df = pd.DataFrame(vertices, columns=['Lon', 'Lat'])
        df['index_gdf'] = idx  # Add index from GeoDataFrame
        all_data.append(df)

    return pd.concat(all_data).query('Lat==Lat').reset_index(drop=1).drop(columns='index_gdf')



#Side Bar
address = st.sidebar.text_input(
    "Address", "1315 10th St, Sacramento, CA 95814")
date = st.sidebar.date_input("Date",  pd.Timestamp(2021, 7, 14), key='date')
number_days_range = st.sidebar.selectbox(
    'Within Day Range:', (5, 10, 30, 90, 180))

refresh = st.sidebar.radio(
    'Refresh Data (as of 3/7/24): Will Take Time ', (False, True))
miles_range = st.sidebar.selectbox(
    'Find Fires within Range (Miles):', (None, 50, 100, 250, 500))

size = st.sidebar.radio(
    'Greater than 100 Acres', ("Yes", "No"))

#Get Data
gdf = get_perimeters(refresh)

# Geocode Addreses
lat, lon = geocode(address)

#Filter Data
start_date, end_date = date - \
    pd.Timedelta(days=number_days_range), date + \
    pd.Timedelta(days=number_days_range+1)
start_date_str, end_date_str = start_date.strftime(
    '%Y-%m-%d'), end_date.strftime('%Y-%m-%d')
gdf_cut = gdf.query(f"'{start_date_str}'<=DiscoveryDate<='{end_date_str}'")
gdf_cut['DiscoveryDate'] = gdf_cut['DiscoveryDate'].dt.strftime('%Y-%m-%d')


#Distance to Fire
gdf_cut["Lat_address"] = lat
gdf_cut["Lon_address"] = lon
gdf_cut['Miles to Fire Centroid'] = [
    distance(i) for i in gdf_cut[gdf_cut.columns[-4:]].values]
gdf_cut['Miles to Fire Centroid'] = gdf_cut['Miles to Fire Centroid'].round(2)
gdf_cut['Size_acres']=gdf_cut['Size_acres'].round(1)
if miles_range is not None:
    gdf_cut = gdf_cut.query(f"`Miles to Fire Centroid`<={miles_range}")

if size == 'Yes':
    gdf_cut = gdf_cut.query("Size_acres>100")

gdf_cut = gdf_cut.sort_values('Miles to Fire Centroid').drop_duplicates().reset_index(drop=1)
# gdf_cut.index = gdf_cut.index+1

#Map Data
m = map_perimeters(gdf_cut, address)

#Incident Edge
indicents = list(gdf_cut['Incident'].values)
incident_edge = st.sidebar.selectbox(
    'Find Distance to Closest Edge:', indicents)
vertices = extract_vertices(gdf_cut[gdf_cut['Incident']==incident_edge])
vertices["Lat_address"] = lat
vertices["Lon_address"] = lon
vertices['Distance'] = [
    distance(i) for i in vertices.values]
closest_edge = vertices[vertices['Distance']
                        == vertices['Distance'].min()]

try:
    lon_point, lat_point = closest_edge[['Lon', 'Lat']].values[0]
    distance_edge = closest_edge['Distance'].round(2).values[0]
    folium.PolyLine([[lat, lon],
                     [lat_point, lon_point]],
                    color='black',
                    tooltip=f'Distance: {distance_edge} Miles'
                    ).add_to(m)
except:
    pass

#Display
col1, col2 = st.columns((2, 3))
with col1:
    st.header('Fire Perimeters')
    st_folium(m, height=600)
with col2:
    st.header('Fires')
    gdf_cut2 = gdf_cut[['Incident', 'DiscoveryDate', 'Size_acres','Miles to Fire Centroid']].drop_duplicates().reset_index(drop=1)
    gdf_cut2.index = gdf_cut2.index+1
    gdf_cut2