import gradio as gr import pandas as pd from sklearn.linear_model import LinearRegression import numpy as np # サンプルデータの作成 np.random.seed(0) dates = pd.date_range('20230101', periods=100) sales = np.random.randint(100, 200, size=(100,)) data = pd.DataFrame({'date': dates, 'sales': sales}) # モデルの訓練 model = LinearRegression() data['date_ordinal'] = pd.to_datetime(data['date']).map(pd.Timestamp.toordinal) X = data['date_ordinal'].values.reshape(-1, 1) y = data['sales'].values model.fit(X, y) def predict_sales(future_date): future_date_ordinal = pd.to_datetime(future_date).toordinal() prediction = model.predict(np.array([[future_date_ordinal]])) return prediction[0] # Gradioインターフェースの定義 iface = gr.Interface( fn=predict_sales, inputs=gr.components.Textbox(label="Enter future date (YYYY-MM-DD)"), outputs=gr.components.Textbox(label="Predicted sales") ) if __name__ == "__main__": iface.launch()