File size: 2,748 Bytes
20834fb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
import streamlit as st
from unsloth import FastLanguageModel
import torch

# Load the model and tokenizer
max_seq_length = 2048
dtype = None  # None for auto detection. Float16 for Tesla T4, V100, Bfloat16 for Ampere+
load_in_4bit = True  # Use 4bit quantization to reduce memory usage. Can be False.

# Initialize the model
model, tokenizer = FastLanguageModel.from_pretrained(
    model_name="suhaifLLM/unsloth-llama3-8b-instruct-4bit",
    max_seq_length=max_seq_length,
    dtype=dtype,
    load_in_4bit=load_in_4bit
)

# Default instruction
default_instruction = "You are a creative writer. Based on the given input, generate a well-structured story with an engaging plot, well-developed characters, and immersive details. Ensure the story has a clear beginning, middle, and end. Include dialogue and descriptions to bring the story to life. You can add a twist to the story also."

def format_prompt(input_text, instruction=default_instruction):
    return f"{instruction}\n\nInput:\n{input_text}\n\nResponse:\n"

# Streamlit App
st.title("Interactive Storytelling Assistant")
st.write("Create your story prompt and receive story suggestions!")

# User input for story prompt
user_input = st.text_area("Enter your story idea:", "A young adventurer embarks on a journey to find a lost treasure.")
generate_story = st.button("Generate Story")

if generate_story and user_input:
    # Prepare inputs for the model
    inputs = tokenizer(
        [format_prompt(user_input)],
        return_tensors="pt"
    ).to("cuda")
    
    # Generate story
    outputs = model.generate(**inputs, max_new_tokens=500, use_cache=True)
    generated_story = tokenizer.decode(outputs[0], skip_special_tokens=True)
    
    # Display generated story
    st.subheader("Generated Story:")
    st.write(generated_story)

# Feedback mechanism
st.subheader("Rate the Story")
story_rating = st.slider("How would you rate this story?", 1, 5)
user_feedback = st.text_area("Additional Feedback/Suggestions:")

if st.button("Submit Feedback"):
    st.write("Thank you for your feedback!")
    # Process feedback (In a real scenario, this would be saved to a database)

# Community engagement
st.subheader("Share Your Story")
user_story = st.text_area("Write or paste your own story here:")
if st.button("Share Story"):
    st.write("Thank you for sharing your story!")
    # Save the story (In a real scenario, this would be saved to a shared community platform)

# Display shared stories (Placeholder example)
st.subheader("Community Stories")
st.write("Story 1: An epic tale of adventure...")  # Placeholder for actual stories

# Critique section
st.text_area("Leave a critique for Story 1:")
if st.button("Submit Critique"):
    st.write("Thank you for your critique!")