import streamlit as st from unsloth import FastLanguageModel import torch # Load the model and tokenizer max_seq_length = 2048 dtype = None # None for auto detection. Float16 for Tesla T4, V100, Bfloat16 for Ampere+ load_in_4bit = True # Use 4bit quantization to reduce memory usage. Can be False. # Initialize the model model, tokenizer = FastLanguageModel.from_pretrained( model_name="suhaifLLM/unsloth-llama3-8b-instruct-4bit", max_seq_length=max_seq_length, dtype=dtype, load_in_4bit=load_in_4bit ) # Default instruction default_instruction = "You are a creative writer. Based on the given input, generate a well-structured story with an engaging plot, well-developed characters, and immersive details. Ensure the story has a clear beginning, middle, and end. Include dialogue and descriptions to bring the story to life. You can add a twist to the story also." def format_prompt(input_text, instruction=default_instruction): return f"{instruction}\n\nInput:\n{input_text}\n\nResponse:\n" # Streamlit App st.title("Interactive Storytelling Assistant") st.write("Create your story prompt and receive story suggestions!") # User input for story prompt user_input = st.text_area("Enter your story idea:", "A young adventurer embarks on a journey to find a lost treasure.") generate_story = st.button("Generate Story") if generate_story and user_input: # Prepare inputs for the model inputs = tokenizer( [format_prompt(user_input)], return_tensors="pt" ).to("cuda") # Generate story outputs = model.generate(**inputs, max_new_tokens=500, use_cache=True) generated_story = tokenizer.decode(outputs[0], skip_special_tokens=True) # Display generated story st.subheader("Generated Story:") st.write(generated_story) # Feedback mechanism st.subheader("Rate the Story") story_rating = st.slider("How would you rate this story?", 1, 5) user_feedback = st.text_area("Additional Feedback/Suggestions:") if st.button("Submit Feedback"): st.write("Thank you for your feedback!") # Process feedback (In a real scenario, this would be saved to a database) # Community engagement st.subheader("Share Your Story") user_story = st.text_area("Write or paste your own story here:") if st.button("Share Story"): st.write("Thank you for sharing your story!") # Save the story (In a real scenario, this would be saved to a shared community platform) # Display shared stories (Placeholder example) st.subheader("Community Stories") st.write("Story 1: An epic tale of adventure...") # Placeholder for actual stories # Critique section st.text_area("Leave a critique for Story 1:") if st.button("Submit Critique"): st.write("Thank you for your critique!")