Upload 2 files
Browse files- app.py +26 -0
- requirements.txt +1 -0
app.py
ADDED
@@ -0,0 +1,26 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from huggingface_hub import from_pretrained_fastai
|
2 |
+
import gradio as gr
|
3 |
+
from fastai.vision.all import *
|
4 |
+
import os
|
5 |
+
|
6 |
+
try:
|
7 |
+
import toml
|
8 |
+
except ImportError:
|
9 |
+
os.system('pip install toml')
|
10 |
+
import toml
|
11 |
+
|
12 |
+
|
13 |
+
# repo_id = "YOUR_USERNAME/YOUR_LEARNER_NAME"
|
14 |
+
repo_id = "maviced/chest_xray"
|
15 |
+
|
16 |
+
learner = from_pretrained_fastai(repo_id)
|
17 |
+
labels = learner.dls.vocab
|
18 |
+
|
19 |
+
# Definimos una función que se encarga de llevar a cabo las predicciones
|
20 |
+
def predict(img):
|
21 |
+
# img = PILImage.create(img)
|
22 |
+
pred,pred_idx,probs = learner.predict(img)
|
23 |
+
return {labels[i]: float(probs[i]) for i in range(len(labels))}
|
24 |
+
|
25 |
+
# Creamos la interfaz y la lanzamos.
|
26 |
+
gr.Interface(fn=predict, inputs=gr.inputs.Image(shape=(128, 128)), outputs=gr.outputs.Label(num_top_classes=3),examples=['IM-0006-0001.jpeg','person100_bacteria_482.jpeg']).launch(share=False)
|
requirements.txt
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
fastai
|