Update app.py
Browse files
app.py
CHANGED
@@ -0,0 +1,41 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import shap
|
2 |
+
import numpy as np
|
3 |
+
import torch
|
4 |
+
from transformers import pipeline, AutoModelForSequenceClassification, AutoTokenizer
|
5 |
+
import streamlit as st
|
6 |
+
|
7 |
+
model_name = "mavinsao/mi-roberta-base-finetuned-mental-health"
|
8 |
+
model = AutoModelForSequenceClassification.from_pretrained(model_name)
|
9 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
10 |
+
|
11 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
12 |
+
model.to(device)
|
13 |
+
|
14 |
+
# Create a pipeline with the model and tokenizer
|
15 |
+
classifier = pipeline("text-classification", model=model, tokenizer=tokenizer)
|
16 |
+
|
17 |
+
# Streamlit app
|
18 |
+
st.title("SHAP Explanation for Mental Illness Prediction")
|
19 |
+
|
20 |
+
# Input text area for user input
|
21 |
+
text = st.text_area("Enter a sentence to explain:")
|
22 |
+
|
23 |
+
if st.button("Explain"):
|
24 |
+
# Generate the SHAP explainer
|
25 |
+
explainer = shap.Explainer(classifier, masker=tokenizer)
|
26 |
+
|
27 |
+
# Compute SHAP values
|
28 |
+
shap_values = explainer([text])
|
29 |
+
|
30 |
+
# Save SHAP plot as HTML
|
31 |
+
shap_html = shap.plots.text(shap_values, display=False)
|
32 |
+
|
33 |
+
# Save the plot to an HTML file
|
34 |
+
shap_html.save_html("shap_plot.html")
|
35 |
+
|
36 |
+
# Read the HTML file and display in Streamlit
|
37 |
+
with open("shap_plot.html", "r") as f:
|
38 |
+
shap_html = f.read()
|
39 |
+
|
40 |
+
# Display the SHAP plot in Streamlit using components
|
41 |
+
st.components.v1.html(shap_html, height=500, scrolling=True)
|