Spaces:
Runtime error
Runtime error
File size: 2,117 Bytes
cffa665 fc84b02 cffa665 016515e bc8a213 9b1b4e2 46c3a5a cffa665 9b1b4e2 46c3a5a cffa665 9b1b4e2 cffa665 3d6eaf1 bc8a213 9b1b4e2 bc8a213 4c1df25 016515e 33345b9 6a803ad cffa665 bc8a213 46c3a5a 9b1b4e2 46c3a5a cffa665 a86b3f5 239a7e9 cffa665 9b1b4e2 bc8a213 a86b3f5 bc8a213 9b1b4e2 46c3a5a ba18a11 46c3a5a cffa665 c25cfd7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 |
import matplotlib.pyplot as plt
import numpy as np
from PIL import Image, ImageFilter
import io
import time
import os
import copy
import pickle
import datetime
import urllib.request
import gradio as gr
import torch
from mmocr.apis import MMOCRInferencer
ocr = MMOCRInferencer(det="TextSnake", rec="ABINet_Vision")
url = "https://upload.wikimedia.org/wikipedia/commons/thumb/5/5b/Draft_Marks_on_the_Bow_of_Kruzenshtern_Port_of_Tallinn_16_July_2011.jpg/1600px-Draft_Marks_on_the_Bow_of_Kruzenshtern_Port_of_Tallinn_16_July_2011.jpg"
path_input = "./example1.jpg"
urllib.request.urlretrieve(url, filename=path_input)
url = "https://upload.wikimedia.org/wikipedia/commons/3/3e/733_how-deep.jpg"
path_input = "./example2.jpg"
urllib.request.urlretrieve(url, filename=path_input)
path_img_output_folder = "./demo-out"
path_img_input_folder = "./demo-input"
def do_process(img):
img_name = "tmp.jpg"
path_input = os.path.join(path_img_input_folder, img_name)
path_output = os.path.join(path_img_output_folder, "vis", img_name)
img.save(path_input)
# img.save(path_output)
result = ocr(path_input, out_dir=path_img_output_folder, save_vis=True)
img_res = Image.open(path_output)
return img_res, result["predictions"][0]["rec_texts"]
input_im = gr.inputs.Image(
shape=None, image_mode="RGB", invert_colors=False, source="upload", type="pil"
)
output_img = gr.outputs.Image(label="Output of OCR", type="pil")
output_txt = gr.outputs.Textbox(type='text', label='predictions')
title = "Reading draught marks"
description = (
"Playground: Reading draught marks using pre-trained models. Tools: MMOCR, Gradio. Source of images: Wikipedia."
)
examples = [["./example1.jpg"], ["./example2.jpg"]]
article = "<p style='text-align: center'><a href='https://github.com/mawady' target='_blank'>By Dr. Mohamed Elawady</a></p>"
iface = gr.Interface(
fn=do_process,
inputs=[input_im],
outputs=[output_img, output_txt],
live=False,
interpretation=None,
title=title,
description=description,
article=article,
examples=examples,
)
iface.launch(debug=True)
|