Spaces:
Runtime error
Runtime error
File size: 2,317 Bytes
cffa665 fc84b02 cffa665 e56299c cffa665 46c3a5a 9b1b4e2 46c3a5a 9b1b4e2 46c3a5a cffa665 9b1b4e2 46c3a5a cffa665 9b1b4e2 cffa665 9b1b4e2 cffa665 3d6eaf1 9b1b4e2 4c1df25 ebf4710 9b1b4e2 cffa665 46c3a5a 9b1b4e2 46c3a5a cffa665 46c3a5a cffa665 9b1b4e2 46c3a5a cffa665 c25cfd7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 |
import matplotlib.pyplot as plt
import numpy as np
from PIL import Image, ImageFilter
import io
import time
import os
import copy
import pickle
import datetime
import urllib.request
import gradio as gr
import torch
from mmocr.apis import MMOCRInferencer
ocr = MMOCRInferencer(det='TextSnake', rec='ABINet_Vision')
url = (
"https://upload.wikimedia.org/wikipedia/commons/thumb/5/5b/Draft_Marks_on_the_Bow_of_Kruzenshtern_Port_of_Tallinn_16_July_2011.jpg/1600px-Draft_Marks_on_the_Bow_of_Kruzenshtern_Port_of_Tallinn_16_July_2011.jpg"
)
path_input = "./example1.jpg"
urllib.request.urlretrieve(url, filename=path_input)
url = "https://upload.wikimedia.org/wikipedia/commons/3/3e/733_how-deep.jpg"
path_input = "./example2.jpg"
urllib.request.urlretrieve(url, filename=path_input)
path_img_output_folder = "./demo-out"
if not os.path.exists(path_img_output_folder):
os.makedirs(path_img_output_folder)
path_img_input_folder = "./demo-input"
if not os.path.exists(path_img_input_folder):
os.makedirs(path_img_input_folder)
def do_process(img):
img_name = 'tmp.jpg'
path_input = os.path.join(path_img_input_folder, img_name)
path_output = os.path.join(path_img_output_folder, 'vis',img_name)
img.save(path_input)
img.save(path_output)
# result = ocr(path_input, out_dir=path_img_output_folder, save_vis=True)
img_res = Image(filename=path_output)
return img_res
input_im = gr.inputs.Image(
shape=None, image_mode="RGB", invert_colors=False, source="upload", type="pil"
)
output_img = gr.outputs.Image(label="Output of Integrated Gradients", type="pil")
# output_base = gr.outputs.Image(label="Baseline image", type="pil")
# output_label = gr.outputs.Label(label="Classification results", num_top_classes=3)
title = "Reading draught marks"
description = "Playground: Reading draught marks using pre-trained models. Tools: MMOCR, Gradio."
examples = [["./example1.jpg"], ["./example2.jpg"]]
article = "<p style='text-align: center'><a href='https://github.com/mawady' target='_blank'>By Dr. Mohamed Elawady</a></p>"
iface = gr.Interface(
fn=do_process,
inputs=[input_im],
outputs=[output_img],
live=False,
interpretation=None,
title=title,
description=description,
article=article,
examples=examples,
)
iface.launch(debug=True)
|