Spaces:
Running
Running
import torch | |
import torch.nn as nn | |
import numpy as np | |
from torchvision import models, transforms | |
import time | |
import os | |
import copy | |
import pickle | |
from PIL import Image | |
import datetime | |
import gdown | |
import urllib.request | |
import gradio as gr | |
# url = 'https://drive.google.com/uc?id=1VMLpE5ojF9fq0GtBKaqcMVWUIfJUfKbc' | |
path_class_names = "./class_names_restnet_catsVSdogs.pkl" | |
# gdown.download(url, path_class_names, quiet=False, use_cookies=False) | |
# url = 'https://drive.google.com/uc?id=1jorQB1mpPCLH097M8paxut3v5XwVlKqp' | |
path_model = "./model_state_restnet_catsVSdogs.pth" | |
# gdown.download(url, path_model, quiet=False, use_cookies=False) | |
url = ( | |
"https://upload.wikimedia.org/wikipedia/commons/3/38/Adorable-animal-cat-20787.jpg" | |
) | |
path_input = "./cat.jpg" | |
urllib.request.urlretrieve(url, filename=path_input) | |
url = "https://upload.wikimedia.org/wikipedia/commons/4/43/Cute_dog.jpg" | |
path_input = "./dog.jpg" | |
urllib.request.urlretrieve(url, filename=path_input) | |
data_transforms_val = transforms.Compose( | |
[ | |
transforms.Resize(256), | |
transforms.CenterCrop(224), | |
transforms.ToTensor(), | |
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]), | |
] | |
) | |
class_names = pickle.load(open(path_class_names, "rb")) | |
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") | |
model_ft = models.resnet18(pretrained=True) | |
num_ftrs = model_ft.fc.in_features | |
model_ft.fc = nn.Linear(num_ftrs, len(class_names)) | |
model_ft = model_ft.to(device) | |
model_ft.load_state_dict(copy.deepcopy(torch.load(path_model, device))) | |
def do_inference(img): | |
img_t = data_transforms_val(img) | |
batch_t = torch.unsqueeze(img_t, 0) | |
model_ft.eval() | |
# We don't need gradients for test, so wrap in | |
# no_grad to save memory | |
with torch.no_grad(): | |
batch_t = batch_t.to(device) | |
# forward propagation | |
output = model_ft(batch_t) | |
# get prediction | |
probs = torch.nn.functional.softmax(output, dim=1) | |
output = ( | |
torch.argsort(probs, dim=1, descending=True).cpu().numpy()[0].astype(int) | |
) | |
probs = probs.cpu().numpy()[0] | |
probs = probs[output] | |
labels = np.array(class_names)[output] | |
return {labels[i]: round(float(probs[i]), 2) for i in range(len(labels))} | |
im = gr.inputs.Image( | |
shape=(512, 512), image_mode="RGB", invert_colors=False, source="upload", type="pil" | |
) | |
title = "CatsVsDogs Classifier" | |
description = "Playground: Inferernce of Object Classification (Binary) using ResNet18 model and CatsVsDogs dataset. Libraries: PyTorch, Gradio." | |
examples = [["./cat.jpg"], ["./dog.jpg"]] | |
article = "<p style='text-align: center'><a href='https://github.com/mawady' target='_blank'>By Dr. Mohamed Elawady</a></p>" | |
iface = gr.Interface( | |
do_inference, | |
im, | |
gr.outputs.Label(num_top_classes=2), | |
live=False, | |
interpretation=None, | |
title=title, | |
description=description, | |
article=article, | |
examples=examples, | |
) | |
# iface.test_launch() | |
iface.launch() |