Spaces:
Sleeping
Sleeping
File size: 8,638 Bytes
cbce622 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 |
# MODIFY AS REQUIRED
import torch
import pandas as pd
import seaborn as sns
import numpy as np
import matplotlib.pyplot as plt
import plotly.express as px
import plotly.graph_objects as go
from plotly.subplots import make_subplots
from sklearn.model_selection import train_test_split
from datasets import load_dataset
from datasets import Dataset, DatasetDict
from transformers import DataCollatorWithPadding
from torch.utils.data import DataLoader
from transformers import AutoTokenizer, AutoModelForSequenceClassification
from torch.optim import AdamW
from torch.nn import BCEWithLogitsLoss
from transformers import get_scheduler
from tqdm.auto import tqdm
import evaluate
from tqdm import tqdm
import logging
logging.basicConfig(level=logging.INFO)
from text_preprocessing import clean_tweet, clear_reply_mentions, normalizeTweet
'''
DATA_PATH = "../../data"
PROCESSED_PATH = f"{DATA_PATH}/processed"
PROCESSED_PATH_VIRAL = f'{DATA_PATH}/new/processed/viral'
PROCESSED_PATH_COVID = f'{DATA_PATH}/new/processed/covid'
'''
# Different models
BERT_BASE_UNCASED = "bert-base-uncased"
BERT_BASE_CASED = "bert-base-cased"
ROBERTA_BASE = "roberta-base"
BERT_TWEET = "vinai/bertweet-base"
# BERT_TWEET_LARGE = "vinai/bertweet-large"
DEBERTA_V3 = "microsoft/deberta-v3-base"
# TODO: Don't forget to cite papers if you use some model
BERT_TINY = "prajjwal1/bert-tiny"
TWEET_MAX_LENGTH = 280
# TEST SPLIT RATIO + MODELS (ADD MORE MODELS FROM ABOVE)
# MODELS = [BERT_TWEET, BERT_TINY, BERT_BASE_CASED, ROBERTA_BASE]
MODELS = [DEBERTA_V3]
TEST_RATIO = 0.2
def preprocess_data(dataset):
# remove tweets with 0 retweets (to eliminate their effects)
#dataset = dataset[dataset.retweet_count > 0]
## UPDATE: Get tweets tweeted by the same user, on the same day he tweeted a viral tweet
# Get the date from datetime
# normalize() sets all datetimes clock to midnight, which is equivalent as keeping only the date part
dataset['date'] = dataset.created_at.dt.normalize()
viral_tweets = dataset[dataset.viral]
non_viral_tweets = dataset[~dataset.viral]
temp = non_viral_tweets.merge(viral_tweets[['author_id', 'date', 'id', 'viral']], on=['author_id', 'date'], suffixes=(None, '_y'))
same_day_viral_ids = temp.id_y.unique()
same_day_viral_tweets = viral_tweets[viral_tweets.id.isin(same_day_viral_ids)].drop_duplicates(subset=['author_id', 'date'])
same_day_non_viral_tweets = temp.drop_duplicates(subset=['author_id', 'date'])
logging.info(f"Number of viral tweets tweeted on the same day {len(same_day_viral_tweets)}")
logging.info(f"Number of non viral tweets tweeted on the same day {len(same_day_non_viral_tweets)}")
dataset = pd.concat([same_day_viral_tweets, same_day_non_viral_tweets], axis=0)
dataset = dataset[['id', 'text', 'viral']]
# Balance classes to have as many viral as non viral ones
#dataset = pd.concat([positives, negatives.sample(n=len(positives))])
#dataset = pd.concat([positives.iloc[:100], negatives.sample(n=len(positives)).iloc[:200]])
# Clean text to prepare for tokenization
#dataset = dataset.dropna()
dataset.loc[:, "viral"] = dataset.viral.astype(int)
# TODO: COMMENT IF YOU WANT TO KEEP TEXT AS IS
dataset["cleaned_text"] = dataset.text.apply(lambda x: clean_tweet(x, demojize_emojis=False))
dataset = dataset.dropna()
dataset = dataset[['id', 'cleaned_text', 'viral']]
return dataset
def prepare_dataset(sample_data, balance=False):
# Split the train and test data st each has a fixed proportion of viral tweets
train_dataset, eval_dataset = train_test_split(sample_data, test_size=TEST_RATIO, random_state=42, stratify=sample_data.viral)
# Balance test set
if balance:
eval_virals = eval_dataset[eval_dataset.viral == 1]
eval_non_virals = eval_dataset[eval_dataset.viral == 0]
eval_dataset = pd.concat([eval_virals, eval_non_virals.sample(n=len(eval_virals))])
logging.info('{:>5,} training samples with {:>5,} positives and {:>5,} negatives'.format(
len(train_dataset), len(train_dataset[train_dataset.viral == 1]), len(train_dataset[train_dataset.viral == 0])))
logging.info('{:>5,} validation samples with {:>5,} positives and {:>5,} negatives'.format(
len(eval_dataset), len(eval_dataset[eval_dataset.viral == 1]), len(eval_dataset[eval_dataset.viral == 0])))
train_dataset.to_parquet("train.parquet.gzip", compression='gzip')
eval_dataset.to_parquet("test.parquet.gzip", compression='gzip')
ds = load_dataset("parquet", data_files={'train': 'train.parquet.gzip', 'test': 'test.parquet.gzip'})
return ds
def tokenize_function(example, tokenizer):
# Truncate to max length. Note that a tweet's maximum length is 280
# TODO: check dynamic padding: https://huggingface.co/course/chapter3/2?fw=pt#dynamic-padding
return tokenizer(example["cleaned_text"], truncation=True)
def test_all_models(ds, models=MODELS):
models_losses = {}
device = torch.device("mps") if torch.mps.is_available() else torch.device("cpu")
output = ""
for checkpoint in models:
torch.mps.empty_cache()
tokenizer = AutoTokenizer.from_pretrained(checkpoint)
model = AutoModelForSequenceClassification.from_pretrained(checkpoint, num_labels=2)
model.to(device)
tokenized_datasets = ds.map(lambda x: tokenize_function(x, tokenizer=tokenizer), batched=True)
data_collator = DataCollatorWithPadding(tokenizer=tokenizer)
tokenized_datasets = tokenized_datasets.remove_columns(["__index_level_0__", "cleaned_text", "id"])
tokenized_datasets = tokenized_datasets.rename_column("viral", "labels")
tokenized_datasets.set_format("torch")
batch_size = 32
train_dataloader = DataLoader(tokenized_datasets["train"], shuffle=True, batch_size=batch_size, collate_fn=data_collator)
eval_dataloader = DataLoader(tokenized_datasets["test"], batch_size=batch_size, collate_fn=data_collator)
criterion = BCEWithLogitsLoss()
optimizer = AdamW(model.parameters(), lr=5e-5)
optimizer = AdamW(model.parameters(), lr=5e-5)
num_epochs = 15
num_training_steps = num_epochs * len(train_dataloader)
lr_scheduler = get_scheduler(
name="linear", optimizer=optimizer, num_warmup_steps=0, num_training_steps=num_training_steps
)
progress_bar = tqdm(range(num_training_steps))
exp_loss = None
losses = []
model.train()
for epoch in range(num_epochs):
for batch in train_dataloader:
batch = {k: v.to(device) for k, v in batch.items()}
outputs = model(**batch)
loss = outputs.loss
losses.append(loss.item())
loss.backward()
if exp_loss is None:
exp_loss = loss.cpu().item()
else:
exp_loss = 0.9 * exp_loss + 0.1 * loss.cpu().item()
optimizer.step()
lr_scheduler.step()
optimizer.zero_grad()
progress_bar.update(1)
progress_bar.set_postfix({"loss": exp_loss, "epoch": epoch})
torch.save(model.state_dict(), f"models/trained_{checkpoint.replace('/', '_')}.pt")
models_losses[checkpoint] = losses
metric = evaluate.combine(["accuracy", "recall", "precision", "f1"])
model.eval()
for batch in eval_dataloader:
batch = {k: v.to(device) for k, v in batch.items()}
with torch.no_grad():
outputs = model(**batch)
logits = outputs.logits
predictions = torch.argmax(logits, dim=-1)
metric.add_batch(predictions=predictions, references=batch["labels"])
output += f"checkpoint: {checkpoint}: {metric.compute()}\n"
logging.info(output)
with open("same_day_as_viral_with_features_train_test_balanced_accuracy.txt", "w") as text_file:
text_file.write(output)
return models_losses
def main():
# DATA FILE SHOULD BE AT THE ROOT WITH THIS SCRIPT
all_tweets_labeled = pd.read_parquet(f'final_dataset_since_october_2022.parquet.gzip')
dataset = preprocess_data(all_tweets_labeled)
ds = prepare_dataset(dataset, balance=False)
test_all_models(ds)
if __name__ == "__main__":
main()
|