Spaces:
Sleeping
Sleeping
File size: 5,258 Bytes
cbce622 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 |
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Twitter Scraping for viral Tweets"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"As of now (October 2022), there is no way to retrieve the tweets from the Topic \"viral tweets\" from the Twitter API. Those are tweets that Twitter labels as viral based on number of likes, retweets and reaction surrounding the tweet in general. That's why we used online scraper tools to scrape tweets off this Twitter Topic page (namely https://twitter.com/i/topics/1284234742661963776)."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"DATA_PATH = \"../../../data\"\n",
"SCRAPED_TWEETS_PATH = f\"{DATA_PATH}/scraped\""
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"#### Octoparse"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"import os\n",
"\n",
"OCTOPARSE = f\"{SCRAPED_TWEETS_PATH}/octoparse/\"\n",
"data_files = []\n",
"\n",
"# iterate over files in\n",
"# that directory\n",
"for filename in os.listdir(OCTOPARSE):\n",
" f = os.path.join(OCTOPARSE, filename)\n",
" # checking if it is a file\n",
" if os.path.isfile(f):\n",
" data_files.append(f)\n",
"\n",
"data_files"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from bs4 import BeautifulSoup\n",
"import json\n",
"\n",
"links = []\n",
"\n",
"for data_file in data_files:\n",
" with open(data_file, \"r\", encoding='utf8') as read_file:\n",
" data = json.load(read_file)\n",
"\n",
" for field in data:\n",
" for elem in field.values():\n",
" soup = BeautifulSoup(elem)\n",
" #print(soup.prettify())\n",
" for link in soup.find_all(\"a\"):\n",
" links.append(link.get(\"href\")) \n",
"\n",
"octoparse_tweet_ids = set([link.split('/')[3] for link in links if 'status' in link]) "
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"len(octoparse_tweet_ids)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"#### Other scraper"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"import os\n",
"\n",
"SAMPLE_SCRAPER = f\"{SCRAPED_TWEETS_PATH}/sample-scraper/\"\n",
"data_files = []\n",
"\n",
"# iterate over files in\n",
"# that directory\n",
"for filename in os.listdir(SAMPLE_SCRAPER):\n",
" f = os.path.join(SAMPLE_SCRAPER, filename)\n",
" # checking if it is a file\n",
" if os.path.isfile(f):\n",
" data_files.append(f)\n",
"\n",
"data_files"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"links = []\n",
"\n",
"for data_file in data_files:\n",
" with open(data_file, \"r\", encoding='utf8') as read_file:\n",
" data = json.load(read_file)\n",
"\n",
" for field in data.values():\n",
" if type(field) == list:\n",
" for elem in field:\n",
" links.append(elem['url'])\n",
"\n",
"sample_scraper_tweet_ids = set([link.split('/')[5] for link in links if 'status' in link])"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"len(sample_scraper_tweet_ids)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Save all to csv"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"viral_tweet_ids = list(octoparse_tweet_ids) + list(sample_scraper_tweet_ids)\n",
"len(viral_tweet_ids)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# Save the ids into a file\n",
"import pandas as pd\n",
"\n",
"viral_tweet_ids_df = pd.DataFrame(viral_tweet_ids, columns=['tweet_id'])\n",
"# Append csv\n",
"viral_tweet_ids_df.to_csv(f\"{SCRAPED_TWEETS_PATH}/scraped_tweets_ids.csv\", index=False, header=True)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3.8.11 ('ada')",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.8.15"
},
"orig_nbformat": 4,
"vscode": {
"interpreter": {
"hash": "71d2f77bccee14ca7852d7b7a1fa8ea4708b81087104d93973081337557f0ee6"
}
}
},
"nbformat": 4,
"nbformat_minor": 2
}
|