File size: 5,258 Bytes
cbce622
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
{
 "cells": [
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "# Twitter Scraping for viral Tweets"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "As of now (October 2022), there is no way to retrieve the tweets from the Topic \"viral tweets\" from the Twitter API. Those are tweets that Twitter labels as viral based on number of likes, retweets and reaction surrounding the tweet in general. That's why we used online scraper tools to scrape tweets off this Twitter Topic page (namely https://twitter.com/i/topics/1284234742661963776)."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "DATA_PATH = \"../../../data\"\n",
    "SCRAPED_TWEETS_PATH = f\"{DATA_PATH}/scraped\""
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "#### Octoparse"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "import os\n",
    "\n",
    "OCTOPARSE = f\"{SCRAPED_TWEETS_PATH}/octoparse/\"\n",
    "data_files = []\n",
    "\n",
    "# iterate over files in\n",
    "# that directory\n",
    "for filename in os.listdir(OCTOPARSE):\n",
    "    f = os.path.join(OCTOPARSE, filename)\n",
    "    # checking if it is a file\n",
    "    if os.path.isfile(f):\n",
    "        data_files.append(f)\n",
    "\n",
    "data_files"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "from bs4 import BeautifulSoup\n",
    "import json\n",
    "\n",
    "links = []\n",
    "\n",
    "for data_file in data_files:\n",
    "    with open(data_file, \"r\", encoding='utf8') as read_file:\n",
    "        data = json.load(read_file)\n",
    "\n",
    "        for field in data:\n",
    "            for elem in field.values():\n",
    "                soup = BeautifulSoup(elem)\n",
    "                #print(soup.prettify())\n",
    "                for link in soup.find_all(\"a\"):\n",
    "                    links.append(link.get(\"href\"))  \n",
    "\n",
    "octoparse_tweet_ids = set([link.split('/')[3] for link in links if 'status' in link])  "
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "len(octoparse_tweet_ids)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "#### Other scraper"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "import os\n",
    "\n",
    "SAMPLE_SCRAPER = f\"{SCRAPED_TWEETS_PATH}/sample-scraper/\"\n",
    "data_files = []\n",
    "\n",
    "# iterate over files in\n",
    "# that directory\n",
    "for filename in os.listdir(SAMPLE_SCRAPER):\n",
    "    f = os.path.join(SAMPLE_SCRAPER, filename)\n",
    "    # checking if it is a file\n",
    "    if os.path.isfile(f):\n",
    "        data_files.append(f)\n",
    "\n",
    "data_files"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "links = []\n",
    "\n",
    "for data_file in data_files:\n",
    "    with open(data_file, \"r\", encoding='utf8') as read_file:\n",
    "        data = json.load(read_file)\n",
    "\n",
    "        for field in data.values():\n",
    "            if type(field) == list:\n",
    "                for elem in field:\n",
    "                    links.append(elem['url'])\n",
    "\n",
    "sample_scraper_tweet_ids = set([link.split('/')[5] for link in links if 'status' in link])"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "len(sample_scraper_tweet_ids)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "### Save all to csv"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "viral_tweet_ids = list(octoparse_tweet_ids) + list(sample_scraper_tweet_ids)\n",
    "len(viral_tweet_ids)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "# Save the ids into a file\n",
    "import pandas as pd\n",
    "\n",
    "viral_tweet_ids_df = pd.DataFrame(viral_tweet_ids, columns=['tweet_id'])\n",
    "# Append csv\n",
    "viral_tweet_ids_df.to_csv(f\"{SCRAPED_TWEETS_PATH}/scraped_tweets_ids.csv\", index=False, header=True)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": []
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "Python 3.8.11 ('ada')",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.8.15"
  },
  "orig_nbformat": 4,
  "vscode": {
   "interpreter": {
    "hash": "71d2f77bccee14ca7852d7b7a1fa8ea4708b81087104d93973081337557f0ee6"
   }
  }
 },
 "nbformat": 4,
 "nbformat_minor": 2
}