File size: 10,409 Bytes
ad8da65
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
# Endpoint Overview

## Overview

The query endpoint expects a body that represents a query with the following keys:

* `select` (required)
* `from` (optional)
* `subquery` (optional)
* `filter` (optional)
* `group_by` (optional)
* `order_by` (optional)

### Property Types

There are 2 types of properties that can be returned in the query response:

1. "regular" properties - to select all of these at once time, you can use the `*` string
    * include all of the model's attributes
    * `inference_timestamp`
    * `received_timestamp`
    * `inference_id`
    * `partner_inference_id`
    * `ground_truth_timestamp` (if ground truth is included)
    * `batch_id` (if batch model)
2. "enriched" properties - you must specify these by name to include them in the response and use the `from`
   value `enriched`:
    * `anomaly_score`
    * `lime_importance`
    * `shap_importance`

### 'From' Sources

There are 3 valid values for the `from` field:

1. `inference` - The latest, raw inference data sent to the platform. This is the default.
2. `enriched` - Every value from the `inference` data, with additional fields for anomaly scores and explanations. This
   data has some insert latency compared to the raw table.
3. `reference` - The reference data set uploaded for the model.

(endpoint_overview_filter_field)=
### Filter Field

The `filter` field contains a list of filters to apply to your query. It takes the form:

```json
{
  "filter": [
    {
      "property": "<property_name> [string]",
      "comparator": "<comparator> [string]",
      "value": "<value> [any]"
    }, 
     "..."
  ]
}
```

(endpoint_overview_filter_comparators)=
#### Filter Comparators

The following filter comparators are available:

* `eq` - Filters where the property field equals the value field.
* `ne` - Filters where the property field is not equal to the value field.
* `lt` - Filters where the property field is less than the value field. Only valid for number values.
* `gt` - Filters where the property field is greater than the value field. Only valid for number values.
* `lte` - Filters where the property field is less than or equal to the value field. Only valid for number values.
* `gte` - Filters where the property field is greater than or equal to the value field. Only valid for number values.
* `in` - Filters where the property field is equal to any value in a list of possible values
* `like` - Filters where the property field is like the value field. This filter is only valid for property types of
  unstructured text.
* `NotNull` - Filters where the property field is not null. Value field should be empty.
* `IsNull` - Filters where the property field is null. Value field should be empty.

### Object Detection Fields

Computer Vision models with an Output Type of `Object Detection` have some special fields you can use when querying.

Bounding boxes are sent using the following form: `[class_id, confidence, top_left_x, top_left_y, width, height]`. While
the fields aren't named when sending data, you can access these nested fields when querying.

Using the following model as an example:

```
InputType: Image
OutputType: ObjectDetection
Attributes:
	name	            stage	           value_type	
0	image	            PIPELINE_INPUT	   IMAGE	
1	label	            GROUND_TRUTH	   BOUNDING_BOX
2	objects_detected	PREDICTED_VALUE	   BOUNDING_BOX	
```

Example query fetching all bounding box fields

```json
{
  "selects": [
    {
      "property": "inference_id"
    },
    {
      "property": "objects_detected"
    }
  ]
}
```

The reponse will have 1 object per bounding box.

```json
{
  "query_result": [
    {
      "inference_id": "1",
      "objects_detected.class_id": 0,
      "objects_detected.confidence": 0.6,
      "objects_detected.top_left_x": 23,
      "objects_detected.top_left_y": 45,
      "objects_detected.width": 20,
      "objects_detected.height": 30
    },
    {
      "inference_id": "1",
      "objects_detected.class_id": 1,
      "objects_detected.confidence": 0.6,
      "objects_detected.top_left_x": 23,
      "objects_detected.top_left_y": 45,
      "objects_detected.width": 20,
      "objects_detected.height": 30
    },
    {
      "inference_id": 2,
      "...": "..."
    }
  ]
}
```

You can also specify only a single nested field:

```json
{
  "selects": [
    {
      "property": "inference_id"
    },
    {
      "property": "objects_detected.class_id"
    },
    {
      "property": "objects_detected.confidence"
    }
  ]
}
```

The reponse will have 1 object per bounding box.

```json
{
  "query_result": [
    {
      "inference_id": "1",
      "objects_detected.class_id": 0,
      "objects_detected.confidence": 0.6
    },
    {
      "inference_id": "1",
      "objects_detected.class_id": 1,
      "objects_detected.confidence": 0.6
    },
    {
      "inference_id": 2,
      "...": "..."
    }
  ]
}
```

```{note} When supplying the bounding box specific fields in filters, group bys, or order bys the columns must also be supplied in the select clause in order for the query to succeed.
```

## Inference Search Examples

### Example 1: Inference ID

Select all an inference's non-enriched properties where `inference_id` is equal
to `e8cc429c-c4a6-425e-af09-7567fafdb17b` (this is the id that returns when an inference that is sent to Arthur)

Query Request Body:

```json
{
  "select": [
    {
      "property": "*"
    }
  ],
  "filter": [
    {
      "property": "inference_id",
      "comparator": "eq",
      "value": "e8cc429c-c4a6-425e-af09-7567fafdb17b"
    }
  ]
}
```

Query Response:

```json
{
  "query_result": [
    {
      "inference_id": "e8cc429c-c4a6-425e-af09-7567fafdb17b",
      "partner_inference_id": "8734-3423",
      "attr1": "something"
    }
  ]
}
```

[back to top](#endpoint-overview)

### Example 2: Partner Inference ID

Select all the inference's non-enriched properties where the `partner_inference_id` is equal to `8734-3423` (this is the
id that the user specifies to associate with an inference that is sent to Arthur)

Query Request Body:

```json
{
  "select": [
    {
      "property": "*"
    }
  ],
  "filter": [
    {
      "property": "partner_inference_id",
      "comparator": "eq",
      "value": "8734-3423"
    }
  ]
}
```

Query Response:

```json
{
  "query_result": [
    {
      "inference_id": "e8cc429c-c4a6-425e-af09-7567fafdb17b",
      "partner_inference_id": "8734-3423",
      "attr1": "something"
    }
  ]
}
```

[back to top](#endpoint-overview)

### Example 3: Timestamp Filters

Select all the inference's non-enriched properties and `anomaly_score` where `inference_timestamp` is greater than or
equal to `2020-22-07T10:00:00` and less than `2020-22-07T11:00:00`

Query Request Body:

```json
{
  "select": [
    {
      "property": "*"
    },
    {
      "property": "anomaly_score"
    }
  ],
  "from": "enriched",
  "filter": [
    {
      "property": "inference_timestamp",
      "comparator": "gte",
      "value": "2020-07-22T10:00:00Z"
    },
    {
      "property": "inference_timestamp",
      "comparator": "lt",
      "value": "2020-07-22T11:00:00Z"
    }
  ]
}
```

Query Response:

```json
{
  "query_result": [
    {
      "inference_id": "0001",
      "attr1": "something",
      "anomaly_score": 0.34,
      "inference_timestamp": "2020-07-22T10:01:23Z"
    },
    {
      "inference_id": "0002",
      "attr1": "something",
      "anomaly_score": 0.67,
      "inference_timestamp": "2020-07-22T10:02:55Z"
    }
  ]
}
```

[back to top](#endpoint-overview)

### Example 4: Batch ID Filter

Select all of the inference's non-enriched properties where `inference_timestamp` is greater than or equal
to `2020-22-07T10:00:00` and less than `2020-22-07T11:00:00` and where `batch_id` is equal to `batch1`

Query Request Body:

```json
{
  "select": [
    {
      "property": "*"
    }
  ],
  "filter": [
    {
      "property": "inference_timestamp",
      "comparator": "gte",
      "value": "2020-07-22T10:00:00Z"
    },
    {
      "property": "inference_timestamp",
      "comparator": "lt",
      "value": "2020-07-22T11:00:00Z"
    },
    {
      "property": "batch_id",
      "comparator": "eq",
      "value": "batch1"
    }
  ]
}
```

Query Response:

```json
{
  "query_result": [
    {
      "inference_id": "0001",
      "attr1": "something",
      "batch_id": "batch1",
      "inference_timestamp": "2020-07-22T10:01:23Z"
    },
    {
      "inference_id": "0002",
      "attr1": "something",
      "batch_id": "batch1",
      "inference_timestamp": "2020-07-22T10:02:55Z"
    }
  ]
}
```

[back to top](#endpoint-overview)

### Example 5: Aliasing and Order By

Select the `inference_id`, `state`, `income`, `inference_timestamp`, and `health_score` as `predicted_health_score`
where `inference_timestamp` is greater than or equal to `2020-22-07T10:00:00` and less than `2020-22-07T11:00:00` and
where `state` is equal to `DC` and `income` is greater than or equal to `50000` and less than `90000`

Query Request Body:

```json
{
  "select": [
    {
      "property": "inference_id"
    },
    {
      "property": "state"
    },
    {
      "property": "income"
    },
    {
      "property": "inference_timestamp"
    },
    {
      "property": "health_score",
      "alias": "predicted_health_score"
    }
  ],
  "filter": [
    {
      "property": "inference_timestamp",
      "comparator": "gte",
      "value": "2020-07-22T10:00:00Z"
    },
    {
      "property": "inference_timestamp",
      "comparator": "lt",
      "value": "2020-07-22T11:00:00Z"
    },
    {
      "property": "state",
      "comparator": "eq",
      "value": "DC"
    },
    {
      "property": "income",
      "comparator": "gte",
      "value": 50000
    },
    {
      "property": "income",
      "comparator": "lt",
      "value": 90000
    }
  ],
  "order_by": [
    {
      "property": "income",
      "direction": "desc"
    }
  ]
}
```

Query Response:

```json
{
  "query_result": [
    {
      "inference_id": "e8cc429c-c4a6-425e-af09-7567fafdb17b",
      "state": "DC",
      "income": 75000,
      "predicted_health_score": 84.3,
      "inference_timestamp": "2020-07-22T10:02:55Z"
    },
    {
      "inference_id": "1b813f11-94b8-4b5d-b26d-bc1cbc99b708",
      "state": "DC",
      "income": 52000,
      "predicted_health_score": 79.6,
      "inference_timestamp": "2020-07-22T10:31:02Z"
    }
  ]
}
```

[back to top](#endpoint-overview)