Spaces:
Sleeping
Sleeping
File size: 9,204 Bytes
ad8da65 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 |
# Advanced Example: Unique Identifiers Initial analyses that treat inferences as independent of one another can provide tremendous value. But over time, models often make multiple predictions about the same real-world entities. No matter what you're predicting, it can be helpful to compare the inputs and outputs of your model on an entity-by-entity basis. For example, let's say that your model makes predictions about whether customers will make a purchase in the next 30 days. You might have the following attributes: - `customer_id`: a non-input attribute - `will_purchase_pred`: the prediction attribute: whether a customer will make a purchase in the next 30 days - `will_purchase_gt`: the ground truth attribute: whether a customer actually did make a purchase within 30 days - `recent_purchase_count`: an input attribute with the total number of purchases the customer made in the last 90 days - `newsletter_subscriber`: an input attribute depicting whether the customer subscribes to the deals newsletter Your model might be run on the full universe of Customer IDs at some regular interval. With Arthur's powerful Query API, you can follow inferences for each Customer ID through time and answer questions like: - How does `recent_purchase_count` tend to change for each customer, from the first to last time inference is conducted? - What is the per-customer variance of `recent_purchase_count` across time? - How many customers changed their newsletter subscription status, from one month ago to today? - What is the distribution of the lifetimes of Customer IDs? ## Example Queries We'll walk through some example queries for these entity-by-entity comparisons, exploring the sample case outlined above. ### Per-Customer Variance We can look at how consistent `recent_purchase_count` is _for each customer_ across time. We'll compute the variance in `recent_purchase_count` for each customer across all their inferences, and then roll those individual variances up into a distribution. ```json { "select": [ { "function": "distribution", "alias": "recent_purchase_count_variance_distribution", "parameters": { "property": { "nested_function": { "function": "variance", "parameters": { "property": "recent_purchase_count" } } }, "num_bins": 20 } } ], "subquery": { "select": [ { "property": "recent_purchase_count" }, { "property": "customer_id" } ], "group_by": [ { "property": "customer_id" } ] } } ``` ### Change Across Batches If our model is a batch model, we might want to compare the values for each customer between two difference batches. We'll again look at the distribution of change in the `recent_purchase_count`, but this time look at the difference for each customer between two specific batches. ```json { "select": [ { "function": "distribution", "alias": "recent_purchase_count_difference_distribution", "parameters": { "property": { "nested_function": { "function": "subtract", "parameters": { "left": "batch1_recent_purchase_count", "right": "batch2_recent_purchase_count" } } }, "num_bins": 20 } } ], "subquery": { "select": [ { "property": "customer_id" }, { "property": "batch1_recent_purchase_count" }, { "property": "batch2_recent_purchase_count" } ], "subquery": { "select": [ { "property": "customer_id" }, { "function": "anyIf", "parameters": { "result": "recent_purchase_count", "property": "batch_id", "comparator": "eq", "value": "batch1" }, "alias": "batch1_recent_purchase_count" }, { "function": "anyIf", "parameters": { "result": "recent_purchase_count", "property": "batch_id", "comparator": "eq", "value": "batch2" }, "alias": "batch2_recent_purchase_count" } ], "group_by": [ { "property": "customer_id" } ] }, "where": [ { "property": "batch1_recent_purchase_count", "comparator": "NotNull" }, { "property": "batch2_recent_purchase_count", "comparator": "NotNull" } ] } } ``` ### Change Across First to Last Inference Per Customer We can again compare the difference between two absolute points, but instead of comparing fixed batches compute it for the earliest and latest inference for each customer: ```json { "select": [ { "function": "distribution", "alias": "recent_purchase_count_difference_distribution", "parameters": { "property": { "nested_function": { "function": "subtract", "parameters": { "left": "newest_recent_purchase_count", "right": "oldest_recent_purchase_count" } } }, "num_bins": 20 } } ], "subquery": { "select": [ { "property": "customer_id" }, { "function": "argMax", "parameters": { "argument": "inference_timestamp", "value": "recent_purchase_count" }, "alias": "newest_recent_purchase_count" }, { "function": "argMin", "parameters": { "argument": "inference_timestamp", "value": "recent_purchase_count" }, "alias": "oldest_recent_purchase_count" } ], "group_by": [ { "property": "customer_id" } ] } } ``` ### Change in Categorical Variables We can also look at change in categorical variables on an entity-by-entity basis. Let's look at the distribution of customers who remained subscribed, remained unsubscribed, newly subscribed, or newly unsubscribed from one batch to the next. ```json { "select": [ { "alias": "batch1_not_subscribed", "function": "equals", "parameters": { "left": "batch1_newsletter_subscriber", "right": 0 } }, { "alias": "batch1_is_subscribed", "function": "equals", "parameters": { "left": "batch1_newsletter_subscriber", "right": 1 } }, { "alias": "batch2_not_subscribed", "function": "equals", "parameters": { "left": "batch2_newsletter_subscriber", "right": 0 } }, { "alias": "batch2_is_subscribed", "function": "equals", "parameters": { "left": "batch2_newsletter_subscriber", "right": 1 } }, { "alias": "stayed_unsubscribed_count", "function": "and", "parameters": { "left": { "alias_ref": "batch1_not_subscribed" }, "right": { "alias_ref": "batch2_not_subscribed" } } }, { "alias": "did_subscribe_count", "function": "and", "parameters": { "left": { "alias_ref": "batch1_not_subscribed" }, "right": { "alias_ref": "batch2_is_subscribed" } } }, { "alias": "stayed_subscribed_count", "function": "and", "parameters": { "left": { "alias_ref": "batch1_is_subscribed" }, "right": { "alias_ref": "batch2_is_subscribed" } } }, { "alias": "did_unsubscribe_count", "function": "and", "parameters": { "left": { "alias_ref": "batch1_is_subscribed" }, "right": { "alias_ref": "batch2_not_subscribed" } } } ], "subquery": { "select": [ { "property": "customer_id" }, { "property": "batch1_newsletter_subscriber" }, { "property": "batch2_newsletter_subscriber" } ], "subquery": { "select": [ { "property": "customer_id" }, { "function": "anyIf", "parameters": { "result": "newsletter_subscriber", "property": "batch_id", "comparator": "eq", "value": "batch1" }, "alias": "batch1_newsletter_subscriber" }, { "function": "anyIf", "parameters": { "result": "newsletter_subscriber", "property": "batch_id", "comparator": "eq", "value": "batch2" }, "alias": "batch2_newsletter_subscriber" } ], "group_by": [ { "property": "customer_id" } ] }, "where": [ { "property": "batch1_newsletter_subscriber", "comparator": "NotNull" }, { "property": "batch2_newsletter_subscriber", "comparator": "NotNull" } ] } } ``` |