File size: 9,835 Bytes
ad8da65
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
# Query Quickstart

To access information about a model's performance, drift, bias, or other enabled enrichments, write a `query` object 
and submit it with the Arthur SDK using `arthur_model.query(query)`

For a general overview of this endpoint, including a more thorough descriptions of its rules, power, and customizability, 
see the {doc}`endpoint_overview` page.

In each of the following examples, let our model be a binary classifier, and let `GT1` and `PRED1` be the names of our model's grouth truth attribute and predicted value, respectively.

## Accuracy
This is usually the simplest way to check for classifier performance. We can fetch a model's accuracy rate by querying a `select` on the function `accuracyRate` using the typical threshold `0.5`.

Given the following query:
```python
GT1 = 'gt_isFraud'
PRED1 = 'pred_isFraud'

query = {
    "select": [
        {
            "function": "accuracyRate",
            "parameters": 
                {
                    "threshold" : 0.5,
                    "ground_truth_property" : GT1,
                    "predicted_property" : PRED1
                }
        }
    ]
}
query_result = arthur_model.query(query)
```
The `query_result` will be:
```python
[{'accuracyRate': 0.999026947368421}]
```

## Accuracy by batch
To expand the accuracy query by batch, add the `batch_id` property to the query's `select`, and add a `group_by` to the query using `batch_id`.

Given the following query:
```python
GT1 = 'gt_isFraud'
PRED1 = 'pred_isFraud'

query = {
    "select": [
        {
            "function": "accuracyRate",
            "parameters": 
                {
                    "threshold" : 0.5,
                    "ground_truth_property" : GT1,
                    "predicted_property" : PRED1
                }
        },
        {
            "property": "batch_id"
        }
    ],
    "group_by": [
        {
            "property": "batch_id"
        }
    ]
}
query_result = arthur_model.query(query)
```
The `query_result` will be:
```python
[{'accuracyRate': 0.999704, 'batch_id': 'newbatch3'},
 {'accuracyRate': 0.999744, 'batch_id': 'newbatch0'},
 {'accuracyRate': 0.992952, 'batch_id': 'newbatch19'},
 {'accuracyRate': 0.999616, 'batch_id': 'newbatch5'},
 {'accuracyRate': 0.999144, 'batch_id': 'newbatch6'},
 ...]
```

## Batch IDs
Querying accuracy by batch includes the `batch_id` values in the query result. But to query the `batch_id`s on their own, only `select` and `group_by` the `batch_id`.

Given the following query:
```python
query = {
    "select": [
        {
            "property": "batch_id"
        }
    ],
    "group_by": [
        {
            "property": "batch_id"
        }
    ]
}

query_result = arthur_model.query(query)
```
The `query_result` will be:
```python
[{'batch_id': 'newbatch19'},
 {'batch_id': 'newbatch18'},
 {'batch_id': 'newbatch13'},
 {'batch_id': 'newbatch12'},
 {'batch_id': 'newbatch16'},
...]
```

## Accuracy (single batch)
To query the accuracy for only one batch, add a `filter` to the query according to the rule `batch_id == BATCHNAME`

Given the following query (for a specified batch name):
```python
GT1 = 'gt_isFraud'
PRED1 = 'pred_isFraud'
BATCHNAME = "newbatch19"

query = {
    "select": [
        {
            "function": "accuracyRate",
            "parameters": 
                {
                    "threshold" : 0.5,
                    "ground_truth_property" : GT1,
                    "predicted_property" : PRED1
                }
        },
        {
            "property": "batch_id"
        }
    ],
    "group_by": [
        {
            "property": "batch_id"
        }
    ],
    "filter": [
        {
            "property": "batch_id",
            "comparator": "eq",
            "value": BATCHNAME
        }
    ]
}
query_result = arthur_model.query(query)
```
The `query_result` will be:
```python
[{'accuracyRate': 0.992952, 'batch_id': 'newbatch19'}]
```

## Confusion Matrix
A confusion matrix counts the number of true positive, true negative, false positive, and false negative classifications; knowing these values is usually more useful than just accuracy when it is time to improve your model.

To query a confusion matrix, we use the `confusionMatrix` function in our query's `select`. 

```{note} For the confusionMatrix function, the ground_truth_property and predicted_property parameters are optional.
```

Given the following query:
```python
query = {
    "select": [
        {
            "function": "confusionMatrix",
            "parameters": 
                {
                    "threshold" : 0.5
                }
        }
    ]
}
query_result = arthur_model.query(query)
```
The `query_result` will be:
```python
[{'confusionMatrix': 
 {'false_negative': 4622,
  'false_positive': 0,
  'true_negative': 4745195,
  'true_positive': 183}}]
```

## Confusion Matrix (single batch)
As we did with accuracy, to get a confusion matrix for a single batch we add the property `batch_id` to the query's `select`, add a `group_by` using `batch_id`, and then add a `filter` according to the rule `batch_id == BATCHNAME`

Given the following query (for a specified batch name):
```python
BATCHNAME = 'newbatch19'

query = {
    "select": [
        {
            "function": "confusionMatrix",
            "parameters": 
                {
                    "threshold" : 0.5
                }
        },
        {
            "property": "batch_id"
        }
    ],
    "group_by": [
        {
            "property": "batch_id"
        }
    ],
    "filter": [
        {
            "property": "batch_id",
            "comparator": "eq",
            "value": BATCHNAME
        }
    ]
}
query_result = arthur_model.query(query)
```
The `query_result` will be:
```python
[{'batch_id': 'newbatch19',
  'confusionMatrix': 
 {'false_negative': 1762,
  'false_positive': 0,
  'true_negative': 248238,
  'true_positive': 0}}]
```

## Confusion Matrix (by group)
Instead of querying for metrics and grouping by batch, we can group by other groupings as well. Here, we use the model's non-input attribute `race` so that we can compare model performance across different demographics. To do this, we add the group name `race` to our query's `select` and to its `group_by` 

Given the following query:
```python
GROUP = 'race'

query = {
    "select": [
        {
            "function": "confusionMatrix",
            "parameters": {
                "threshold" : 0.5
            }
        },
        {
            "property": GROUP
        }
    ],
    "group_by": [
        {
            "property": GROUP
        }
    ]
}
query_result = arthur_model.query(query)
```
The `query_result` will be:
```python
[{'confusionMatrix': {'false_negative': 1162,
   'false_positive': 0,
   'true_negative': 1184707,
   'true_positive': 44},
  'race': 'hispanic'},
 {'confusionMatrix': {'false_negative': 1145,
   'false_positive': 0,
   'true_negative': 1186659,
   'true_positive': 49},
  'race': 'asian'},
 {'confusionMatrix': {'false_negative': 1137,
   'false_positive': 0,
   'true_negative': 1187500,
   'true_positive': 38},
  'race': 'black'},
 {'confusionMatrix': {'false_negative': 1178,
   'false_positive': 0,
   'true_negative': 1186329,
   'true_positive': 52},
  'race': 'white'}]
```

## Predictions
Here we aren't querying any metrics - we are just accessing all the predictions that have output by the model.

Given the following query:
```python
PRED1 = 'pred_isFraud'
query = {
    "select": [
        {
            "property": PRED1
        }
    ]
}
query_result = arthur_model.query(query)
```
The `query_result` will be:
```python
[{'pred_isFraud_1': 0.005990342859493804},
 {'pred_isFraud_1': 0.02271116879043313},
 {'pred_isFraud_1': 0.15305224676085477},
 {'pred_isFraud_1': 0},
 {'pred_isFraud_1': 0.03280797449330532},
...]
```

## Predictions (average)
To _only_ query the average value across all these predictions (since querying all predictions and then averaging locally can be slow for production-sized query results), we only need to add the `avg` function to our query's `select`, with our predicted value `PRED1` now being a parameter of `avg` instead of a property we directly select.

Given the following query:
```python
PRED1 = 'pred_isFraud'
query = {
    "select": [
        {
            "function": "avg",
            "parameters": {
                "property": PRED1
            }
        }
    ]
}
query_result = arthur_model.query(query)
```
The `query_result` will be:
```python
[{'avg': 0.016030786000398464}]
```

## Predictions (average over time)
To get the average predictions on each day, we add the function `roundTimestamp` to our select using a `time_interval` of `day` - this groups the timestamp information according to `day` instead of options like `hour` or `week`. Then, we add a `group_by` to the query using the `alias` (`DAY`) specified in the `roundTimestamp` function.

Given the following query:
```python
PRED1 = 'pred_isFraud'
query = {
    "select": [
        {
            "function": "avg",
            "parameters": {
                "property": PRED1
            }
        },
        {
            "function": "roundTimestamp",
            "alias": "DAY",
            "parameters": {
                "property": "inference_timestamp",
                "time_interval": "day"
            }
        }
    ],
    "group_by": [
        {
            "alias": "DAY"
        }
    ]
}
query_result = arthur_model.query(query)
```
The `query_result` will be:
```python
[{'avg': 0.016030786000359423, 'DAY': '2022-07-11T00:00:00Z'},
 {'avg': 0.018723459201003300, 'DAY': '2022-07-12T00:00:00Z'},
 {'avg': 0.014009919280009284, 'DAY': '2022-07-13T00:00:00Z'},
 {'avg': 0.016663649020394829, 'DAY': '2022-07-14T00:00:00Z'},
 {'avg': 0.017791902929210039, 'DAY': '2022-07-15T00:00:00Z'},
 ...]
```