Spaces:
Sleeping
Sleeping
File size: 22,809 Bytes
ad8da65 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 |
# Data Drift ## Querying Drift in Python The basic format of a drift query using the Python SDK involves specifying that the `query_type` parameter has the value 'drift': ```python query = {...} arthur_model.query(query, query_type='drift') ``` ## Data Drift Endpoint Data drift has a dedicated endpoint at `/models/{model_id}/inferences/query/data_drift`. Returns the data drift metric between a `base` dataset with a `target` dataset. This endpoint can support up to 100 properties in one request. * `num_bins` - Specifies the granularity of bucketing for continuous distributions and will be ignored if the attribute is categorical. * `metric` - Specify one metric among {ref}`the data drift metrics Arthur offers <glossary_data_drift>`. * `filter` - Optional blocks specific to either reference or inference set and specify which data should be used in the data drift calculation. * `group_by` - Global and applies to both the base and target data. * `rollup` - Optional parameter that will aggregate the calculated data drift value by the supported time dimension. For `HypothesisTest`, the returned value is transformed as -log_10(P_value) to maintain directional parity with the other data drift metrics. That is, lower P_value is more significant and implies data drift, reflected in a higher -log_10(P_value). Further mathematical details are in the {ref}`glossary <glossary_hypothesis_test>. Query Request: ```json { "properties": [ "<attribute1_name> [string]", "<attribute2_name> [string]", "<attribute3_name> [string]" ], "num_bins": "<num_bins> [int]", "metric": "[PSI|KLDivergence|JSDivergence|HellingerDistance|HypothesisTest]", "base": { "source": "[inference|reference]", "filter [Optional]": [ { "property": "<filter_attribute_name> [string]", "comparator": "<comparator> [string]", "value": "<filter_threshold_value> [string|int|float]" } ] }, "target": { "source": "[inference|reference|ground_truth]", "filter [Optional]": [ { "property": "<filter_attribute_name> [string]", "comparator": "<comparator> [string]", "value": "<filter_threshold_value> [string|int|float]" } ] }, "group_by [Optional]": [ { "property": "<group_by_attribute_name> [string]" } ], "rollup [Optional]": "minute|hour|day|month|year|batch_id" } ``` Query Response: ```json { "query_result": [ { "<attribute1_name>": "<attribute1_data_drift> [float]", "<attribute2_name>": "<attribute2_data_drift> [float]", "<attribute3_name>": "<attribute3_data_drift> [float]", "<group_by_attribute_name>": "<group_by_attribute_value> [string|int|null]", "rollup": "<rollup_attribute_value> [string|null]" } ] } ``` See {ref}`endpoint_overview_filter_comparators` for a list of valid comparators. #### Example: Reference vs. Inference Sample Request: Calculate data drift for males, grouped by country, rolled up by hour. ```json { "properties": [ "age" ], "num_bins": 10, "metric": "PSI", "base": { "source": "reference", "filter": [ { "property": "gender", "comparator": "eq", "value": "male" } ] }, "target": { "source": "inference", "filter": [ { "property": "gender", "comparator": "eq", "value": "male" }, { "property": "inference_timestamp", "comparator": "gte", "value": "2020-07-22T10:00:00Z" }, { "property": "inference_timestamp", "comparator": "lt", "value": "2020-07-23T10:00:00Z" } ] }, "group_by": [ { "property": "country" } ], "rollup": "hour" } ``` Sample Response: ```json { "query_result": [ { "age": 2.3, "country": "Canada", "rollup": "2020-07-22T10:00:00Z" }, { "age": 2.4, "country": "United States", "rollup": "2020-07-22T10:00:00Z" } ] } ``` ### Example: Inference vs. Inference Sample Request: Compare data drift between two batches, with no grouping, no filters, and no rollups. ```json { "properties": [ "age" ], "num_bins": 10, "metric": "PSI", "base": { "source": "inference", "filter": [ { "property": "batch_id", "comparator": "eq", "value": "5" } ] }, "target": { "source": "inference", "filter": [ { "property": "batch_id", "comparator": "eq", "value": "6" } ] } } ``` Sample Response: ```json { "query_result": [ { "age": 2.3 } ] } ``` [back to top](#data-drift) ### Example: Reference vs. Ground Truth Sample Request: Calculate data drift for individual ground truth class prediction probabilities, rolled up by hour. ```json { "properties": [ "gt_1" ], "num_bins": 10, "metric": "PSI", "base": { "source": "reference" }, "target": { "source": "ground_truth", "filter": [ { "property": "ground_truth_timestamp", "comparator": "gte", "value": "2020-07-22T10:00:00Z" }, { "property": "ground_truth_timestamp", "comparator": "lt", "value": "2020-07-23T10:00:00Z" } ] }, "rollup": "hour" } ``` Sample Response: ```json { "query_result": [ { "gt_1": 0.03, "rollup": "2020-07-22T10:00:00Z" }, { "gt_1": 0.4, "rollup": "2020-07-22T11:00:00Z" } ] } ``` [back to top](#data-drift) ## Data Drift PSI Bucket Table Values This metric has a dedicated endpoint at `/models/{model_id}/inferences/query/data_drift_psi_bucket_calculation_table`. Returns the [PSI](https://scholarworks.wmich.edu/cgi/viewcontent.cgi?article=4249&context=dissertations) scores by bucket using the reference set data. This query for this endpoint omits the need for `metric` and takes in a single `property` but otherwise is identical to the [data drift endpoint](#data-drift-endpoint) Note when using this endpoint with categorical features, the `bucket_min` and `bucket_max` fields will not be returned in the response. Instead, the `bucket` field will contain the category name. Query Request: ```json { "property": "<attribute_name> [string]", "num_bins": "<num_bins> [int]", "base": { "source": "[inference|reference]", "filter [Optional]": [ { "property": "<filter_attribute_name> [string]", "comparator": "<comparator> [string]", "value": "<filter_threshold_value> [string|int|float]" } ] }, "target": { "source": "[inference|reference]", "filter [Optional]": [ { "property": "<filter_attribute_name> [string]", "comparator": "<comparator> [string]", "value": "<filter_threshold_value> [string|int|float]" } ] }, "group_by [Optional]": [ { "property": "<group_by_attribute_name> [string]" } ], "rollup [Optional]": "minute|hour|day|month|year|batch_id" } ``` Query Response: ```json { "query_result": [ { "bucket": "string", "rollup": "string|null", "group_by_property_1": "string|null", "base_bucket_max": "number", "base_bucket_min": "number", "base_count_per_bucket": "number", "base_ln_probability_per_bucket": "number", "base_probability_per_bucket": "number", "base_total": "number", "target_bucket_max": "number", "target_bucket_min": "number", "target_count_per_bucket": "number", "target_ln_probability_per_bucket": "number", "target_probability_per_bucket": "number", "target_total": "number", "probability_difference": "number", "ln_probability_difference": "number", "psi": "number" } ] } ``` See {ref}`endpoint_overview_filter_comparators` for a list of valid comparators. *** Sample Request: Calculate data drift bucket components for males, grouped by country, rolled up by hour. ```json { "property": "age", "num_bins": 2, "base": { "source": "reference", "filter": [ { "property": "gender", "comparator": "eq", "value": "male" } ] }, "target": { "source": "inference", "filter": [ { "property": "gender", "comparator": "eq", "value": "male" }, { "property": "inference_timestamp", "comparator": "gte", "value": "2020-07-22T10:00:00Z" }, { "property": "inference_timestamp", "comparator": "lt", "value": "2020-07-23T10:00:00Z" } ] }, "group_by": [ { "property": "country" } ], "rollup": "hour" } ``` Sample Response: ```json { "query_result": [ { "bucket": "bucket_1", "rollup": "2020-01-01T00:00:00Z", "country": "Canada", "base_bucket_max": 0.9999971182990177, "base_bucket_min": 0.5009102069226075, "base_count_per_bucket": 4988, "base_ln_probability_per_bucket": -0.6955500651756032, "base_probability_per_bucket": 0.4988, "base_total": 10000, "target_bucket_max": 0.9999971182990177, "target_bucket_min": 0.5009102069226075, "target_count_per_bucket": 2487, "target_ln_probability_per_bucket": -0.6701670131762315, "target_probability_per_bucket": 0.5116231228142357, "target_total": 4861, "probability_difference": -0.012823122814235699, "ln_probability_difference": -0.025383051999371742, "psi": 0.00032548999318807485 }, { "bucket": "bucket_2", "rollup": "2020-01-01T00:00:00Z", "country": "United States", "base_bucket_max": 0.9999971182990177, "base_bucket_min": 0.5009102069226075, "base_count_per_bucket": 4988, "base_ln_probability_per_bucket": -0.6955500651756032, "base_probability_per_bucket": 0.4988, "base_total": 10000, "target_bucket_max": 0.9999971182990177, "target_bucket_min": 0.5009102069226075, "target_count_per_bucket": 2487, "target_ln_probability_per_bucket": -0.6701670131762315, "target_probability_per_bucket": 0.5116231228142357, "target_total": 4861, "probability_difference": -0.012823122814235699, "ln_probability_difference": -0.025383051999371742, "psi": 0.00032548999318807485 }, { "bucket": "bucket_1", "rollup": "2020-01-01T01:00:00Z", "country": "Canada", "base_bucket_max": 0.9999971182990177, "base_bucket_min": 0.5009102069226075, "base_count_per_bucket": 4988, "base_ln_probability_per_bucket": -0.6955500651756032, "base_probability_per_bucket": 0.4988, "base_total": 10000, "target_bucket_max": 0.9999971182990177, "target_bucket_min": 0.5009102069226075, "target_count_per_bucket": 2487, "target_ln_probability_per_bucket": -0.6701670131762315, "target_probability_per_bucket": 0.5116231228142357, "target_total": 4861, "probability_difference": -0.012823122814235699, "ln_probability_difference": -0.025383051999371742, "psi": 0.00032548999318807485 }, { "bucket": "bucket_2", "rollup": "2020-01-01T01:00:00Z", "country": "United States", "base_bucket_max": 0.9999971182990177, "base_bucket_min": 0.5009102069226075, "base_count_per_bucket": 4988, "base_ln_probability_per_bucket": -0.6955500651756032, "base_probability_per_bucket": 0.4988, "base_total": 10000, "target_bucket_max": 0.9999971182990177, "target_bucket_min": 0.5009102069226075, "target_count_per_bucket": 2487, "target_ln_probability_per_bucket": -0.6701670131762315, "target_probability_per_bucket": 0.5116231228142357, "target_total": 4861, "probability_difference": -0.012823122814235699, "ln_probability_difference": -0.025383051999371742, "psi": 0.00032548999318807485 } ] } ``` Sample Request: Compare data drift bucket components between two batches, with no grouping, no filters, and no rollups. ```json { "property": "age", "num_bins": 10, "base": { "source": "inference", "filter": [ { "property": "batch_id", "comparator": "eq", "value": "5" } ] }, "target": { "source": "inference", "filter": [ { "property": "batch_id", "comparator": "eq", "value": "6" } ] } } ``` Sample Response: ```json { "query_result": [ { "bucket": "bucket_1", "base_bucket_max": 0.9999971182990177, "base_bucket_min": 0.5009102069226075, "base_count_per_bucket": 4988, "base_ln_probability_per_bucket": -0.6955500651756032, "base_probability_per_bucket": 0.4988, "base_total": 10000, "target_bucket_max": 0.9999971182990177, "target_bucket_min": 0.5009102069226075, "target_count_per_bucket": 2487, "target_ln_probability_per_bucket": -0.6701670131762315, "target_probability_per_bucket": 0.5116231228142357, "target_total": 4861, "probability_difference": -0.012823122814235699, "ln_probability_difference": -0.025383051999371742, "psi": 0.00032548999318807485 }, { "bucket": "bucket_2", "base_bucket_max": 0.9999971182990177, "base_bucket_min": 0.5009102069226075, "base_count_per_bucket": 4988, "base_ln_probability_per_bucket": -0.6955500651756032, "base_probability_per_bucket": 0.4988, "base_total": 10000, "target_bucket_max": 0.9999971182990177, "target_bucket_min": 0.5009102069226075, "target_count_per_bucket": 2487, "target_ln_probability_per_bucket": -0.6701670131762315, "target_probability_per_bucket": 0.5116231228142357, "target_total": 4861, "probability_difference": -0.012823122814235699, "ln_probability_difference": -0.025383051999371742, "psi": 0.00032548999318807485 } ] } ``` [back to top](#data-drift) ## Data Drift for Classification Outputs For classification outputs, one may want to examine drift among a collection of different classes, i.e. the system of outputs, instead of the drift of the probability predictions of a single class. The query uses one of `"predicted_classes": ["*"]` or `"ground_truth_classes": ["*"]` but otherwise is identical to a standard data drift query. Rather than using the star operator to select all prediction or ground truth classes, respectively, in a model, a list of string classes can be provided for looking at drift of a subset of multiclass outputs. * `predicted_classes` - Specifies which prediction classes to use for `predictedClass` data drift. * `ground_truth_classes` - Specifies which prediction classes to use for `groundTruthClass` data drift. `properties` can be included in the same query as long as the target `source` corresonds to the classification output tag. For example, one can query drift on input attributes and `predictedClass` in the same query with target `source` of `inference`; one can query drift on individual ground truth labels and `groundTruthClass` in the same query with target `source` of `ground_truth`. Query Request: ```json { "properties [Optional]": [ "<attribute1_name> [string]", "<attribute2_name> [string]", "<attribute3_name> [string]" ], "[predicted_classes|ground_truth_classes]": [ "<class0_name> [string]" "<class1_name> [string]" ], "num_bins": "<num_bins> [int]", "metric": "[PSI|KLDivergence|JSDivergence|HellingerDistance|HypothesisTest]", "base": { "source": "[inference|reference]", "filter [Optional]": [ { "property": "<filter_attribute_name> [string]", "comparator": "<comparator> [string]", "value": "<filter_threshold_value> [string|int|float]" } ] }, "target": { "source": "[inference|reference|ground_truth]", "filter [Optional]": [ { "property": "<filter_attribute_name> [string]", "comparator": "<comparator> [string]", "value": "<filter_threshold_value> [string|int|float]" } ] }, "group_by [Optional]": [ { "property": "<group_by_attribute_name> [string]" } ], "rollup [Optional]": "minute|hour|day|month|year|batch_id" } ``` Query Response: ```json { "query_result": [ { "<attribute1_name>": "<attribute1_data_drift> [float]", "<attribute2_name>": "<attribute2_data_drift> [float]", "<attribute3_name>": "<attribute3_data_drift> [float]", "[predictedClass|groundTruthClass]": "<classification_data_drift> [float]", "<group_by_attribute_name>": "<group_by_attribute_value> [string|int|null]", "rollup": "<rollup_attribute_value> [string|null]" } ] } ``` See {ref}`endpoint_overview_filter_comparators` for a list of valid comparators. *** Sample Request: Calculate data drift on all prediction classes. ```json { "predicted_classes": [ "*" ], "num_bins": 20, "base": { "source": "reference" }, "target": { "source": "inference" }, "metric": "PSI" } ``` Sample Response: ```json { "query_result": [ { "predictedClass": 0.021 } ] } ``` Sample Request: Calculate data drift on ground truth using the first and third ground truth classes. ```json { "predicted_classes": [ "gt_1", "gt_3" ], "num_bins": 20, "base": { "source": "reference" }, "target": { "source": "ground_truth" }, "metric": "PSI" } ``` Sample Response: ```json { "query_result": [ { "groundTruthClass": 0.021 } ] } ``` [back to top](#data-drift) (automated_data_drift_thresholds)= ## Automated Data Drift Thresholds What is a sufficiently high data drift value to suggest that the target data has actually drifted from the base data? For `HypothesisTest`, we can reverse engineer -log_10(P_value) and plug in the conventional .05 alpha level to establish a lower bound of -log_10(.05). For the other data drift metrics, it is not sufficient to pin a constant. We abstract this away for the user and allow queries to obtain automatically generated data drift thresholds (lower bounds) based on a model's data. These thresholds can be used in alerting. For more information see: [Automating Data Drift Thresholding in Machine Learning Systems](https://arthur.ai/blog/automating-data-drift-thresholding-in-machine-learning-systems). The query uses `"metric": "Thresholds"` and does not require nor use `"target"` and `"rollup"` fields but otherwise is identical to a standard data drift query. Query Request: ```json { "properties": [ "<attribute1_name> [string]", "<attribute2_name> [string]", "<attribute3_name> [string]" ], "num_bins": "<num_bins> [int]", "metric": "Thresholds", "base": { "source": "reference", "filter [Optional]": [ { "property": "<filter_attribute_name> [string]", "comparator": "<comparator> [string]", "value": "<filter_threshold_value> [string|int|float]" } ] }, "group_by [Optional]": [ { "property": "<group_by_attribute_name> [string]" } ] } ``` Query Response: ```json { "query_result": [ { "<attribute1_name>": { "HellingerDistance": "<threshold> [float]", "JSDivergence": "<threshold> [float]", "KLDivergence": "<threshold> [float]", "PSI": "<threshold> [float]" }, "<attribute2_name>": { "HellingerDistance": "<threshold> [float]", "JSDivergence": "<threshold> [float]", "KLDivergence": "<threshold> [float]", "PSI": "<threshold> [float]" } } ] } ``` See {ref}`endpoint_overview_filter_comparators` for a list of valid comparators. *** Sample Request: ```json { "properties": [ "AGE" ], "num_bins": 20, "base": { "source": "reference" }, "metric": "Thresholds" } ``` Sample Response: ```json { "query_result": [ { "AGE": { "HellingerDistance": 0.00041737395239735647, "JSDivergence": 2.959228131592643, "KLDivergence": 0.001893866910388703, "PSI": 0.0018945640055550161 } } ] } ``` [back to top](#data-drift) |