Spaces:
Sleeping
Sleeping
File size: 11,245 Bytes
d77f6b0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 |
import numpy as np
import plotly.graph_objects as go
import json
import gradio as gr
from nltk.corpus import words
import nltk
# load files w embeddings, attention scores, and tokens
vocab_embeddings = np.load('vocab_embeddings.npy')
with open('vocab_attention_scores.json', 'r') as f:
vocab_attention_scores = json.load(f)
with open('vocab_tokens.json', 'r') as f:
vocab_tokens = json.load(f)
# attention scores to numpy arrs
b_gen_attention = np.array([score['B-GEN'] for score in vocab_attention_scores])
i_gen_attention = np.array([score['I-GEN'] for score in vocab_attention_scores])
b_unfair_attention = np.array([score['B-UNFAIR'] for score in vocab_attention_scores])
i_unfair_attention = np.array([score['I-UNFAIR'] for score in vocab_attention_scores])
b_stereo_attention = np.array([score['B-STEREO'] for score in vocab_attention_scores])
i_stereo_attention = np.array([score['I-STEREO'] for score in vocab_attention_scores])
o_attention = np.array([score['O'] for score in vocab_attention_scores]) # Use actual O scores
# remove non-dict english words, but keep subwords ##
nltk.download('words')
english_words = set(words.words())
filtered_indices = [i for i, token in enumerate(vocab_tokens) if token in english_words or token.startswith("##")]
filtered_tokens = [vocab_tokens[i] for i in filtered_indices]
b_gen_attention_filtered = b_gen_attention[filtered_indices]
i_gen_attention_filtered = i_gen_attention[filtered_indices]
b_unfair_attention_filtered = b_unfair_attention[filtered_indices]
i_unfair_attention_filtered = i_unfair_attention[filtered_indices]
b_stereo_attention_filtered = b_stereo_attention[filtered_indices]
i_stereo_attention_filtered = i_stereo_attention[filtered_indices]
o_attention_filtered = o_attention[filtered_indices]
# plot top 500 O tokens for comparison
top_500_o_indices = np.argsort(o_attention_filtered)[-500:]
top_500_o_tokens = [filtered_tokens[i] for i in top_500_o_indices]
o_attention_filtered_top_500 = o_attention_filtered[top_500_o_indices]
# tool tip for tokens
def create_hover_text(tokens, b_gen, i_gen, b_unfair, i_unfair, b_stereo, i_stereo, o_val):
hover_text = []
for i in range(len(tokens)):
hover_text.append(
f"Token: {tokens[i]}<br>"
f"B-GEN: {b_gen[i]:.3f}, I-GEN: {i_gen[i]:.3f}<br>"
f"B-UNFAIR: {b_unfair[i]:.3f}, I-UNFAIR: {i_unfair[i]:.3f}<br>"
f"B-STEREO: {b_stereo[i]:.3f}, I-STEREO: {i_stereo[i]:.3f}<br>"
f"O: {o_val[i]:.3f}"
)
return hover_text
# ploting top 100 tokens for each entity
def select_top_100(*data_arrays):
indices_list = []
for data in data_arrays:
if data is not None:
top_indices = np.argsort(data)[-100:]
indices_list.append(top_indices)
combined_indices = np.unique(np.concatenate(indices_list))
# filter based on combined indices
filtered_data = [data[combined_indices] if data is not None else None for data in data_arrays]
tokens_filtered = [filtered_tokens[i] for i in combined_indices]
return (*filtered_data, tokens_filtered)
# plots for 1 2 and 3 D
def create_plot(selected_dimensions):
# plot data
attention_map = {
'Generalization': b_gen_attention_filtered + i_gen_attention_filtered,
'Unfairness': b_unfair_attention_filtered + i_unfair_attention_filtered,
'Stereotype': b_stereo_attention_filtered + i_stereo_attention_filtered,
}
# init x, y, z so they can be moved around
x_data, y_data, z_data = None, None, None
# use selected dimentsions to order dimensions
if len(selected_dimensions) > 0:
x_data = attention_map[selected_dimensions[0]]
if len(selected_dimensions) > 1:
y_data = attention_map[selected_dimensions[1]]
if len(selected_dimensions) > 2:
z_data = attention_map[selected_dimensions[2]]
# select top 100 dps for each selected dimension
x_data, y_data, z_data, tokens_filtered = select_top_100(x_data, y_data, z_data)
# filter the O tokens using the same dimensions
o_x = attention_map[selected_dimensions[0]][top_500_o_indices]
if len(selected_dimensions) > 1:
o_y = attention_map[selected_dimensions[1]][top_500_o_indices]
else:
o_y = np.zeros_like(o_x)
if len(selected_dimensions) > 2:
o_z = attention_map[selected_dimensions[2]][top_500_o_indices]
else:
o_z = np.zeros_like(o_x)
# hover text for GUS tokens
classified_hover_text = create_hover_text(
tokens_filtered,
b_gen_attention_filtered, i_gen_attention_filtered,
b_unfair_attention_filtered, i_unfair_attention_filtered,
b_stereo_attention_filtered, i_stereo_attention_filtered,
o_attention_filtered
)
# hover text for O tokens
o_hover_text = create_hover_text(
top_500_o_tokens,
b_gen_attention_filtered[top_500_o_indices], i_gen_attention_filtered[top_500_o_indices],
b_unfair_attention_filtered[top_500_o_indices], i_unfair_attention_filtered[top_500_o_indices],
b_stereo_attention_filtered[top_500_o_indices], i_stereo_attention_filtered[top_500_o_indices],
o_attention_filtered_top_500
)
# plot
fig = go.Figure()
if x_data is not None and y_data is not None and z_data is not None:
# 3d scatter plot
fig.add_trace(go.Scatter3d(
x=x_data,
y=y_data,
z=z_data,
mode='markers',
marker=dict(
size=6,
color=x_data, # color based on the x-axis data
colorscale='Viridis',
opacity=0.85,
),
text=classified_hover_text,
hoverinfo='text',
name='Classified Tokens'
))
# add top 500 O tags to the plot too
fig.add_trace(go.Scatter3d(
x=o_x,
y=o_y,
z=o_z,
mode='markers',
marker=dict(
size=6,
color='grey',
opacity=0.5,
),
text=o_hover_text,
hoverinfo='text',
name='O Tokens'
))
elif x_data is not None and y_data is not None:
# 2d scatter plot
fig.add_trace(go.Scatter(
x=x_data,
y=y_data,
mode='markers',
marker=dict(
size=6,
color=x_data, # color based on the x-axis data
colorscale='Viridis',
opacity=0.85,
),
text=classified_hover_text,
hoverinfo='text',
name='Classified Tokens'
))
# add top 500 O tags to the plot too
fig.add_trace(go.Scatter(
x=o_x,
y=o_y,
mode='markers',
marker=dict(
size=6,
color='grey',
opacity=0.5,
),
text=o_hover_text,
hoverinfo='text',
name='O Tokens'
))
elif x_data is not None:
# 1D scatter plot
fig.add_trace(go.Scatter(
x=x_data,
y=np.zeros_like(x_data),
mode='markers',
marker=dict(
size=6,
color=x_data,
colorscale='Viridis',
opacity=0.85,
),
text=classified_hover_text,
hoverinfo='text',
name='GUS Tokens'
))
fig.add_trace(go.Scatter(
x=o_x,
y=np.zeros_like(o_x),
mode='markers',
marker=dict(
size=6,
color='grey',
opacity=0.5,
),
text=o_hover_text,
hoverinfo='text',
name='O Tokens'
))
# update layout dynamically
if x_data is not None and y_data is not None and z_data is not None:
# 3D
fig.update_layout(
title="GUS-Net Entity Attentions Visualization",
scene=dict(
xaxis=dict(title=f"{selected_dimensions[0]} Attention"),
yaxis=dict(title=f"{selected_dimensions[1]} Attention"),
zaxis=dict(title=f"{selected_dimensions[2]} Attention"),
),
margin=dict(l=0, r=0, b=0, t=40),
)
elif x_data is not None and y_data is not None:
# 2D
fig.update_layout(
title="GUS-Net Entity Attentions Visualization",
xaxis_title=f"{selected_dimensions[0]} Attention",
yaxis_title=f"{selected_dimensions[1]} Attention",
margin=dict(l=0, r=0, b=0, t=40),
)
elif x_data is not None:
# 1D
fig.update_layout(
title="GUS-Net Entity Attentions Visualization",
xaxis_title=f"{selected_dimensions[0]} Attention",
margin=dict(l=0, r=0, b=0, t=40),
)
return fig
def get_top_tokens_for_entities(selected_dimensions):
entity_map = {
'Generalization': b_gen_attention_filtered + i_gen_attention_filtered,
'Unfairness': b_unfair_attention_filtered + i_unfair_attention_filtered,
'Stereotype': b_stereo_attention_filtered + i_stereo_attention_filtered,
}
top_tokens_info = {}
for dimension in selected_dimensions:
if dimension in entity_map:
attention_scores = entity_map[dimension]
top_indices = np.argsort(attention_scores)[-10:] # top 10 tokens
top_tokens = [filtered_tokens[i] for i in top_indices]
top_scores = attention_scores[top_indices]
top_tokens_info[dimension] = list(zip(top_tokens, top_scores))
return top_tokens_info
def update_gradio(selected_dimensions):
fig = create_plot(selected_dimensions)
top_tokens_info = get_top_tokens_for_entities(selected_dimensions)
formatted_top_tokens = ""
for entity, tokens_info in top_tokens_info.items():
formatted_top_tokens += f"\nTop tokens for {entity}:\n"
for token, score in tokens_info:
formatted_top_tokens += f"Token: {token}, Attention Score: {score:.3f}\n"
return fig, formatted_top_tokens
def render_gradio_interface():
with gr.Blocks() as interface:
with gr.Column():
dimensions_input = gr.CheckboxGroup(
choices=["Generalization", "Unfairness", "Stereotype"],
label="Select Dimensions to Plot",
value=["Generalization", "Unfairness", "Stereotype"] # defaults to 3D
)
plot_output = gr.Plot(label="Token Attention Visualization")
top_tokens_output = gr.Textbox(label="Top Tokens for Each Entity Class", lines=10)
dimensions_input.change(
fn=update_gradio,
inputs=[dimensions_input],
outputs=[plot_output, top_tokens_output]
)
interface.load(
fn=lambda: update_gradio(["Generalization", "Unfairness", "Stereotype"]),
inputs=None,
outputs=[plot_output, top_tokens_output]
)
return interface
interface = render_gradio_interface()
interface.launch() |