Spaces:
Sleeping
Sleeping
import torch | |
import numpy as np | |
from transformers import BertTokenizerFast, BertForTokenClassification | |
from tqdm import tqdm | |
import json | |
# init | |
tokenizer = BertTokenizerFast.from_pretrained('bert-base-uncased') | |
model = BertForTokenClassification.from_pretrained('maximuspowers/bias-detection-ner', output_hidden_states=True) | |
model.eval() | |
model.to('cuda') | |
# get bert's entire vocab | |
vocab_tokens = list(tokenizer.get_vocab().keys()) | |
print(f"Total number of tokens in vocabulary: {len(vocab_tokens)}") # 30522 tokens for bert-base-uncased | |
# precompute embeddings and attention scores for the entire vocabulary | |
def precompute_vocabulary_embeddings_and_attention(): | |
vocab_embeddings = [] | |
vocab_attention_scores = [] | |
for token in tqdm(vocab_tokens, desc="Computing Embeddings and Attention Scores", unit="token"): | |
# no special tokens | |
inputs = tokenizer(token, return_tensors="pt", truncation=True, padding=True, add_special_tokens=False) | |
input_ids = inputs['input_ids'].to(model.device) | |
with torch.no_grad(): | |
outputs = model(input_ids=input_ids) | |
embeddings = outputs.hidden_states[-1][0][0].cpu().numpy() # first token embedding, should only be one anyways | |
vocab_embeddings.append(embeddings) | |
logits = outputs.logits | |
probabilities = torch.sigmoid(logits).cpu().numpy()[0][0] # convert logits to probabilities | |
# store attention scores | |
attention_scores = { | |
'O': float(probabilities[0]), # O class (non-entity) | |
'B-GEN': float(probabilities[3]), # B-GEN | |
'I-GEN': float(probabilities[4]), # I-GEN | |
'B-UNFAIR': float(probabilities[5]), # B-UNFAIR | |
'I-UNFAIR': float(probabilities[6]), # I-UNFAIR | |
'B-STEREO': float(probabilities[1]), # B-STEREO | |
'I-STEREO': float(probabilities[2]) # I-STEREO | |
} | |
vocab_attention_scores.append(attention_scores) | |
return np.array(vocab_embeddings), vocab_attention_scores | |
# precompute | |
vocab_embeddings, vocab_attention_scores = precompute_vocabulary_embeddings_and_attention() | |
# save files | |
np.save('vocab_embeddings.npy', vocab_embeddings) | |
with open('vocab_attention_scores.json', 'w') as f: | |
json.dump(vocab_attention_scores, f) | |
with open('vocab_tokens.json', 'w') as f: | |
json.dump(vocab_tokens, f) | |