Spaces:
Running
Running
File size: 1,437 Bytes
090b1b7 ba275d7 e36bf2f 090b1b7 a2ce6e9 ba275d7 090b1b7 ba275d7 090b1b7 ba275d7 090b1b7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 |
import gradio as gr
import nlpaug.augmenter.word as naw
import nlpaug.augmenter.char as nac
import nlpaug.augmenter.sentence as nas
import nltk
nltk.download('averaged_perceptron_tagger')
nltk.download('wordnet')
# Function for NLP augmentation
def augment_text(text, method):
if method == "Synonym Replacement":
aug = naw.SynonymAug(aug_src="wordnet", aug_max=3)
elif method == "Word Embedding Substitution":
aug = naw.WordEmbsAug(model_type='word2vec', model_path="GoogleNews-vectors-negative300.bin", action="substitute")
elif method == "Contextual Word Insertion":
aug = naw.ContextualWordEmbsAug(model_path="bert-base-uncased", action="insert")
elif method == "Back Translation":
aug = naw.BackTranslationAug(from_model_name='facebook/wmt19-en-de', to_model_name='facebook/wmt19-de-en')
augmented_text = aug.augment(text)
return augmented_text
# Gradio Interface
def nlp_augmentor_interface(text, method):
augmented_text = augment_text(text, method)
return augmented_text
iface = gr.Interface(
fn=nlp_augmentor_interface,
inputs=[
gr.Textbox(lines=2, placeholder="Enter sentence to augment here..."),
gr.Radio(["Synonym Replacement", "Word Embedding Substitution", "Contextual Word Insertion", "Back Translation"], label="Augmentation Method")
],
outputs="text",
title="NLP Text Augmentation with Gradio"
)
iface.launch()
|