Spaces:
Sleeping
Sleeping
import gradio as gr | |
import nlpaug.augmenter.word as naw | |
import nlpaug.augmenter.char as nac | |
import nlpaug.augmenter.sentence as nas | |
import os | |
import nltk | |
from nlpaug.util.file.download import DownloadUtil | |
# Download necessary NLTK resources | |
nltk.download('averaged_perceptron_tagger') | |
nltk.download('wordnet') | |
# Function to download Word2Vec model if not available | |
def download_word2vec(): | |
word2vec_path = "GoogleNews-vectors-negative300.bin" | |
if not os.path.exists(word2vec_path): | |
print("Downloading Word2Vec model...") | |
DownloadUtil.download_word2vec(dest_dir='.') | |
return word2vec_path | |
# Function for NLP augmentation | |
def augment_text(text, method): | |
if method == "Synonym Replacement": | |
aug = naw.SynonymAug(aug_src="wordnet", aug_max=3) | |
elif method == "Word Embedding Substitution": | |
word2vec_path = download_word2vec() # Ensure the model is downloaded | |
aug = naw.WordEmbsAug(model_type='word2vec', model_path=word2vec_path, action="substitute") | |
elif method == "Contextual Word Insertion": | |
aug = naw.ContextualWordEmbsAug(model_path="bert-base-uncased", action="insert") | |
elif method == "Back Translation": | |
aug = naw.BackTranslationAug(from_model_name='facebook/wmt19-en-de', to_model_name='facebook/wmt19-de-en') | |
augmented_text = aug.augment(text) | |
return augmented_text | |
# Gradio Interface | |
def nlp_augmentor_interface(text, method): | |
augmented_text = augment_text(text, method) | |
return augmented_text | |
iface = gr.Interface( | |
fn=nlp_augmentor_interface, | |
inputs=[ | |
gr.Textbox(lines=2, placeholder="Enter sentence to augment here..."), | |
gr.Radio(["Synonym Replacement", "Word Embedding Substitution", "Contextual Word Insertion", "Back Translation"], label="Augmentation Method") | |
], | |
outputs="text", | |
title="NLP Text Augmentation with Gradio" | |
) | |
iface.launch(share=True) | |