text-aug-demo / app.py
maximuspowers's picture
Update app.py
c19dfc1 verified
raw
history blame
1.9 kB
import gradio as gr
import nlpaug.augmenter.word as naw
import nlpaug.augmenter.char as nac
import nlpaug.augmenter.sentence as nas
import os
import nltk
from nlpaug.util.file.download import DownloadUtil
# Download necessary NLTK resources
nltk.download('averaged_perceptron_tagger')
nltk.download('wordnet')
# Function to download Word2Vec model if not available
def download_word2vec():
word2vec_path = "GoogleNews-vectors-negative300.bin"
if not os.path.exists(word2vec_path):
print("Downloading Word2Vec model...")
DownloadUtil.download_word2vec(dest_dir='.')
return word2vec_path
# Function for NLP augmentation
def augment_text(text, method):
if method == "Synonym Replacement":
aug = naw.SynonymAug(aug_src="wordnet", aug_max=3)
elif method == "Word Embedding Substitution":
word2vec_path = download_word2vec() # Ensure the model is downloaded
aug = naw.WordEmbsAug(model_type='word2vec', model_path=word2vec_path, action="substitute")
elif method == "Contextual Word Insertion":
aug = naw.ContextualWordEmbsAug(model_path="bert-base-uncased", action="insert")
elif method == "Back Translation":
aug = naw.BackTranslationAug(from_model_name='facebook/wmt19-en-de', to_model_name='facebook/wmt19-de-en')
augmented_text = aug.augment(text)
return augmented_text
# Gradio Interface
def nlp_augmentor_interface(text, method):
augmented_text = augment_text(text, method)
return augmented_text
iface = gr.Interface(
fn=nlp_augmentor_interface,
inputs=[
gr.Textbox(lines=2, placeholder="Enter sentence to augment here..."),
gr.Radio(["Synonym Replacement", "Word Embedding Substitution", "Contextual Word Insertion", "Back Translation"], label="Augmentation Method")
],
outputs="text",
title="NLP Text Augmentation with Gradio"
)
iface.launch(share=True)