Spaces:
Sleeping
Sleeping
File size: 6,902 Bytes
94bafa8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 |
# Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved.
#
# NVIDIA CORPORATION and its licensors retain all intellectual property
# and proprietary rights in and to this software, related documentation
# and any modifications thereto. Any use, reproduction, disclosure or
# distribution of this software and related documentation without an express
# license agreement from NVIDIA CORPORATION is strictly prohibited.
"""Calculate quality metrics for previous training run or pretrained network pickle."""
import sys; sys.path.extend(['.', 'tools'])
import os
import click
import tempfile
import torch
from omegaconf import OmegaConf
from tools import dnnlib
from metrics import metric_main
from metrics import metric_utils
from tools.torch_utils import training_stats
from tools.torch_utils import custom_ops
#----------------------------------------------------------------------------
def subprocess_fn(rank, args, temp_dir):
dnnlib.util.Logger(should_flush=True)
# Init torch.distributed.
if args.num_gpus > 1:
init_file = os.path.abspath(os.path.join(temp_dir, '.torch_distributed_init'))
if os.name == 'nt':
init_method = 'file:///' + init_file.replace('\\', '/')
torch.distributed.init_process_group(backend='gloo', init_method=init_method, rank=rank, world_size=args.num_gpus)
else:
init_method = f'file://{init_file}'
torch.distributed.init_process_group(backend='nccl', init_method=init_method, rank=rank, world_size=args.num_gpus)
# Init torch_utils.
sync_device = torch.device('cuda', rank) if args.num_gpus > 1 else None
training_stats.init_multiprocessing(rank=rank, sync_device=sync_device)
if rank != 0 or not args.verbose:
custom_ops.verbosity = 'none'
# Print network summary.
device = torch.device('cuda', rank)
torch.backends.cudnn.benchmark = True
torch.backends.cuda.matmul.allow_tf32 = False
torch.backends.cudnn.allow_tf32 = False
# Calculate each metric.
for metric in args.metrics:
if rank == 0 and args.verbose:
print(f'Calculating {metric}...')
progress = metric_utils.ProgressMonitor(verbose=args.verbose)
result_dict = metric_main.calc_metric(
metric=metric,
dataset_kwargs=args.dataset_kwargs, # real
gen_dataset_kwargs=args.gen_dataset_kwargs, # fake
generator_as_dataset=args.generator_as_dataset,
num_gpus=args.num_gpus,
rank=rank,
device=device,
progress=progress,
cache=args.use_cache,
num_runs=args.num_runs,
)
if rank == 0:
metric_main.report_metric(result_dict, run_dir=args.run_dir)
if rank == 0 and args.verbose:
print()
# Done.
if rank == 0 and args.verbose:
print('Exiting...')
#----------------------------------------------------------------------------
class CommaSeparatedList(click.ParamType):
name = 'list'
def convert(self, value, param, ctx):
_ = param, ctx
if value is None or value.lower() == 'none' or value == '':
return []
return value.split(',')
#----------------------------------------------------------------------------
def calc_metrics_for_dataset(ctx, metrics, real_data_path, fake_data_path, mirror, resolution, gpus, verbose, use_cache: bool, num_runs: int):
dnnlib.util.Logger(should_flush=True)
# Validate arguments.
args = dnnlib.EasyDict(metrics=metrics, num_gpus=gpus, verbose=verbose)
if not all(metric_main.is_valid_metric(metric) for metric in args.metrics):
ctx.fail('\n'.join(['--metrics can only contain the following values:'] + metric_main.list_valid_metrics()))
if not args.num_gpus >= 1:
ctx.fail('--gpus must be at least 1')
dummy_dataset_cfg = OmegaConf.create({'max_num_frames': 10000})
# Initialize dataset options for real data.
args.dataset_kwargs = dnnlib.EasyDict(
class_name='utils.dataset.VideoFramesFolderDataset',
path=real_data_path,
cfg=dummy_dataset_cfg,
xflip=mirror,
resolution=resolution,
use_labels=False,
)
# Initialize dataset options for fake data.
args.gen_dataset_kwargs = dnnlib.EasyDict(
class_name='utils.dataset.VideoFramesFolderDataset',
path=fake_data_path,
cfg=dummy_dataset_cfg,
xflip=False,
resolution=resolution,
use_labels=False,
)
args.generator_as_dataset = True
# Print dataset options.
if args.verbose:
print('Real data options:')
print(args.dataset_kwargs)
print('Fake data options:')
print(args.gen_dataset_kwargs)
print('*' * 50 + 'parting line' + '*' * 50)
print('Fake data options:')
print(args.gen_dataset_kwargs)
# Locate run dir.
args.run_dir = None
args.use_cache = use_cache
args.num_runs = num_runs
# Launch processes.
if args.verbose:
print('Launching processes...')
torch.multiprocessing.set_start_method('spawn')
with tempfile.TemporaryDirectory() as temp_dir:
if args.num_gpus == 1:
subprocess_fn(rank=0, args=args, temp_dir=temp_dir)
else:
torch.multiprocessing.spawn(fn=subprocess_fn, args=(args, temp_dir), nprocs=args.num_gpus)
#----------------------------------------------------------------------------
@click.command()
@click.pass_context
@click.option('--metrics', help='Comma-separated list or "none"', type=CommaSeparatedList(), default='fvd2048_16f,fid50k_full', show_default=True)
@click.option('--real_data_path', help='Dataset to evaluate metrics against (directory or zip) [default: same as training data]', metavar='PATH')
@click.option('--fake_data_path', help='Generated images (directory or zip)', metavar='PATH')
@click.option('--mirror', help='Should we mirror the real data?', type=bool, metavar='BOOL')
@click.option('--resolution', help='Resolution for the source dataset', type=int, metavar='INT')
@click.option('--gpus', help='Number of GPUs to use', type=int, default=1, metavar='INT', show_default=True)
@click.option('--verbose', help='Print optional information', type=bool, default=False, metavar='BOOL', show_default=True)
@click.option('--use_cache', help='Use stats cache', type=bool, default=True, metavar='BOOL', show_default=True)
@click.option('--num_runs', help='Number of runs', type=int, default=1, metavar='INT', show_default=True)
def calc_metrics_cli_wrapper(ctx, *args, **kwargs):
calc_metrics_for_dataset(ctx, *args, **kwargs)
#----------------------------------------------------------------------------
if __name__ == "__main__":
calc_metrics_cli_wrapper() # pylint: disable=no-value-for-parameter
#----------------------------------------------------------------------------
|