Spaces:
Sleeping
Sleeping
File size: 19,395 Bytes
94bafa8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 |
import random
from typing import Dict, Optional, Tuple
import torch
import torch.nn as nn
import torch.nn.functional as F
import numpy as np
from omegaconf import DictConfig
from tools.torch_utils import persistence
from tools.torch_utils.ops import bias_act, upfirdn2d, conv2d_resample
from tools.torch_utils import misc
#----------------------------------------------------------------------------
@misc.profiled_function
def normalize_2nd_moment(x, dim=1, eps=1e-8):
return x * (x.square().mean(dim=dim, keepdim=True) + eps).rsqrt()
#----------------------------------------------------------------------------
@persistence.persistent_class
class MappingNetwork(torch.nn.Module):
def __init__(self,
z_dim, # Input latent (Z) dimensionality, 0 = no latent.
c_dim, # Conditioning label (C) dimensionality, 0 = no label.
w_dim, # Intermediate latent (W) dimensionality.
num_ws, # Number of intermediate latents to output, None = do not broadcast.
num_layers = 8, # Number of mapping layers.
embed_features = None, # Label embedding dimensionality, None = same as w_dim.
layer_features = None, # Number of intermediate features in the mapping layers, None = same as w_dim.
activation = 'lrelu', # Activation function: 'relu', 'lrelu', etc.
lr_multiplier = 0.01, # Learning rate multiplier for the mapping layers.
w_avg_beta = 0.995, # Decay for tracking the moving average of W during training, None = do not track.
cfg = {}, # Additional config
):
super().__init__()
self.cfg = cfg
self.z_dim = z_dim
self.c_dim = c_dim
self.w_dim = w_dim
self.num_ws = num_ws
self.num_layers = num_layers
self.w_avg_beta = w_avg_beta
if embed_features is None:
embed_features = w_dim
if c_dim == 0:
embed_features = 0
if layer_features is None:
layer_features = w_dim
features_list = [z_dim + embed_features] + [layer_features] * (num_layers - 1) + [w_dim]
if c_dim > 0:
self.embed = FullyConnectedLayer(c_dim, embed_features)
for idx in range(num_layers):
in_features = features_list[idx]
out_features = features_list[idx + 1]
layer = FullyConnectedLayer(in_features, out_features, activation=activation, lr_multiplier=lr_multiplier)
setattr(self, f'fc{idx}', layer)
if num_ws is not None and w_avg_beta is not None:
self.register_buffer('w_avg', torch.zeros([w_dim]))
def forward(self, z, c, truncation_psi=1, truncation_cutoff=None, skip_w_avg_update=False):
# Embed, normalize, and concat inputs.
x = None
with torch.autograd.profiler.record_function('input'):
if self.z_dim > 0:
misc.assert_shape(z, [None, self.z_dim])
x = normalize_2nd_moment(z.to(torch.float32))
if self.c_dim > 0:
misc.assert_shape(c, [None, self.c_dim])
y = normalize_2nd_moment(self.embed(c.to(torch.float32)))
x = torch.cat([x, y], dim=1) if x is not None else y
# Main layers.
for idx in range(self.num_layers):
layer = getattr(self, f'fc{idx}')
x = layer(x)
# Update moving average of W.
if self.w_avg_beta is not None and self.training and not skip_w_avg_update:
with torch.autograd.profiler.record_function('update_w_avg'):
self.w_avg.copy_(x.detach().mean(dim=0).lerp(self.w_avg, self.w_avg_beta))
# Broadcast.
if self.num_ws is not None:
with torch.autograd.profiler.record_function('broadcast'):
x = x.unsqueeze(1).repeat([1, self.num_ws, 1])
# Apply truncation.
if truncation_psi != 1:
with torch.autograd.profiler.record_function('truncate'):
assert self.w_avg_beta is not None
if self.num_ws is None or truncation_cutoff is None:
x = self.w_avg.lerp(x, truncation_psi)
else:
x[:, :truncation_cutoff] = self.w_avg.lerp(x[:, :truncation_cutoff], truncation_psi)
return x
#----------------------------------------------------------------------------
@persistence.persistent_class
class FullyConnectedLayer(torch.nn.Module):
def __init__(self,
in_features, # Number of input features.
out_features, # Number of output features.
bias = True, # Apply additive bias before the activation function?
activation = 'linear', # Activation function: 'relu', 'lrelu', etc.
lr_multiplier = 1, # Learning rate multiplier.
bias_init = 0, # Initial value for the additive bias.
):
super().__init__()
self.activation = activation
self.weight = torch.nn.Parameter(torch.randn([out_features, in_features]) / lr_multiplier)
self.bias = torch.nn.Parameter(torch.full([out_features], float(bias_init))) if bias else None
self.weight_gain = lr_multiplier / np.sqrt(in_features)
self.bias_gain = lr_multiplier
def forward(self, x):
w = self.weight.to(x.dtype) * self.weight_gain
b = self.bias
if b is not None:
b = b.to(x.dtype)
if self.bias_gain != 1:
b = b * self.bias_gain
if self.activation == 'linear' and b is not None:
x = torch.addmm(b.unsqueeze(0), x, w.t())
else:
x = x.matmul(w.t())
x = bias_act.bias_act(x, b, act=self.activation)
return x
#----------------------------------------------------------------------------
@persistence.persistent_class
class Conv2dLayer(torch.nn.Module):
def __init__(self,
in_channels, # Number of input channels.
out_channels, # Number of output channels.
kernel_size, # Width and height of the convolution kernel.
bias = True, # Apply additive bias before the activation function?
activation = 'linear', # Activation function: 'relu', 'lrelu', etc.
up = 1, # Integer upsampling factor.
down = 1, # Integer downsampling factor.
resample_filter = [1,3,3,1], # Low-pass filter to apply when resampling activations.
conv_clamp = None, # Clamp the output to +-X, None = disable clamping.
channels_last = False, # Expect the input to have memory_format=channels_last?
trainable = True, # Update the weights of this layer during training?
instance_norm = False, # Should we apply instance normalization to y?
lr_multiplier = 1.0, # Learning rate multiplier.
):
super().__init__()
self.activation = activation
self.up = up
self.down = down
self.conv_clamp = conv_clamp
self.register_buffer('resample_filter', upfirdn2d.setup_filter(resample_filter))
self.padding = kernel_size // 2
self.weight_gain = 1 / np.sqrt(in_channels * (kernel_size ** 2))
self.act_gain = bias_act.activation_funcs[activation].def_gain
self.instance_norm = instance_norm
self.lr_multiplier = lr_multiplier
memory_format = torch.channels_last if channels_last else torch.contiguous_format
weight = torch.randn([out_channels, in_channels, kernel_size, kernel_size]).to(memory_format=memory_format)
bias = torch.zeros([out_channels]) if bias else None
if trainable:
self.weight = torch.nn.Parameter(weight)
self.bias = torch.nn.Parameter(bias) if bias is not None else None
else:
self.register_buffer('weight', weight)
if bias is not None:
self.register_buffer('bias', bias)
else:
self.bias = None
def forward(self, x, gain=1):
w = self.weight * (self.weight_gain * self.lr_multiplier)
b = (self.bias.to(x.dtype) * self.lr_multiplier) if self.bias is not None else None
flip_weight = (self.up == 1) # slightly faster
x = conv2d_resample.conv2d_resample(x=x, w=w.to(x.dtype), f=self.resample_filter, up=self.up, down=self.down, padding=self.padding, flip_weight=flip_weight)
act_gain = self.act_gain * gain
act_clamp = self.conv_clamp * gain if self.conv_clamp is not None else None
x = bias_act.bias_act(x, b, act=self.activation, gain=act_gain, clamp=act_clamp)
if self.instance_norm:
x = (x - x.mean(dim=(2,3), keepdim=True)) / (x.std(dim=(2,3), keepdim=True) + 1e-8) # [batch_size, c, h, w]
return x
#----------------------------------------------------------------------------
@persistence.persistent_class
class GenInput(nn.Module):
def __init__(self, cfg: DictConfig, channel_dim: int, motion_v_dim: int=None):
super().__init__()
self.cfg = cfg
if self.cfg.input.type == 'const':
self.input = torch.nn.Parameter(torch.randn([channel_dim, 4, 4]))
self.total_dim = channel_dim
elif self.cfg.input.type == 'temporal':
self.input = TemporalInput(self.cfg, channel_dim, motion_v_dim=motion_v_dim)
self.total_dim = self.input.get_dim()
else:
raise NotImplementedError(f'Unkown input type: {self.cfg.input.type}')
def forward(self, batch_size: int, motion_v: Optional[torch.Tensor]=None, dtype=None, memory_format=None) -> torch.Tensor:
if self.cfg.input.type == 'const':
x = self.input.to(dtype=dtype, memory_format=memory_format)
x = x.unsqueeze(0).repeat([batch_size, 1, 1, 1])
elif self.cfg.input.type == 'temporal':
x = self.input(motion_v=motion_v) # [batch_size, d, h, w]
else:
raise NotImplementedError(f'Unkown input type: {self.cfg.input.type}')
return x
#----------------------------------------------------------------------------
@persistence.persistent_class
class TemporalInput(nn.Module):
def __init__(self, cfg: DictConfig, channel_dim: int, motion_v_dim: int):
super().__init__()
self.cfg = cfg
self.motion_v_dim = motion_v_dim
self.const = nn.Parameter(torch.randn(1, channel_dim, 4, 4))
def get_dim(self):
return self.motion_v_dim + self.const.shape[1]
def forward(self, motion_v: torch.Tensor) -> torch.Tensor:
"""
motion_v: [batch_size, motion_v_dim]
"""
out = torch.cat([
self.const.repeat(len(motion_v), 1, 1, 1),
motion_v.unsqueeze(2).unsqueeze(3).repeat(1, 1, *self.const.shape[2:]),
], dim=1) # [batch_size, channel_dim + num_fourier_feats * 2]
return out
#----------------------------------------------------------------------------
class TemporalDifferenceEncoder(nn.Module):
def __init__(self, cfg: DictConfig):
super().__init__()
self.cfg = cfg
if self.cfg.sampling.num_frames_per_video > 1:
self.d = 256
self.const_embed = nn.Embedding(self.cfg.sampling.max_num_frames, self.d)
self.time_encoder = FixedTimeEncoder(
self.cfg.sampling.max_num_frames,
skip_small_t_freqs=self.cfg.get('skip_small_t_freqs', 0))
def get_dim(self) -> int:
if self.cfg.sampling.num_frames_per_video == 1:
return 1
else:
if self.cfg.sampling.type == 'uniform':
return self.d + self.time_encoder.get_dim()
else:
return (self.d + self.time_encoder.get_dim()) * (self.cfg.sampling.num_frames_per_video - 1)
def forward(self, t: torch.Tensor) -> torch.Tensor:
misc.assert_shape(t, [None, self.cfg.sampling.num_frames_per_video])
batch_size = t.shape[0]
if self.cfg.sampling.num_frames_per_video == 1:
out = torch.zeros(len(t), 1, device=t.device)
else:
if self.cfg.sampling.type == 'uniform':
num_diffs_to_use = 1
t_diffs = t[:, 1] - t[:, 0] # [batch_size]
else:
num_diffs_to_use = self.cfg.sampling.num_frames_per_video - 1
t_diffs = (t[:, 1:] - t[:, :-1]).view(-1) # [batch_size * (num_frames - 1)]
# Note: float => round => long is necessary when it's originally long
const_embs = self.const_embed(t_diffs.float().round().long()) # [batch_size * num_diffs_to_use, d]
fourier_embs = self.time_encoder(t_diffs.unsqueeze(1)) # [batch_size * num_diffs_to_use, num_fourier_feats]
out = torch.cat([const_embs, fourier_embs], dim=1) # [batch_size * num_diffs_to_use, d + num_fourier_feats]
out = out.view(batch_size, num_diffs_to_use, -1).view(batch_size, -1) # [batch_size, num_diffs_to_use * (d + num_fourier_feats)]
return out
#----------------------------------------------------------------------------
@persistence.persistent_class
class FixedTimeEncoder(nn.Module):
def __init__(self,
max_num_frames: int, # Maximum T size
skip_small_t_freqs: int=0, # How many high frequencies we should skip
):
super().__init__()
assert max_num_frames >= 1, f"Wrong max_num_frames: {max_num_frames}"
fourier_coefs = construct_log_spaced_freqs(max_num_frames, skip_small_t_freqs=skip_small_t_freqs)
self.register_buffer('fourier_coefs', fourier_coefs) # [1, num_fourier_feats]
def get_dim(self) -> int:
return self.fourier_coefs.shape[1] * 2
def forward(self, t: torch.Tensor) -> torch.Tensor:
assert t.ndim == 2, f"Wrong shape: {t.shape}"
t = t.view(-1).float() # [batch_size * num_frames]
fourier_raw_embs = self.fourier_coefs * t.unsqueeze(1) # [bf, num_fourier_feats]
fourier_embs = torch.cat([
fourier_raw_embs.sin(),
fourier_raw_embs.cos(),
], dim=1) # [bf, num_fourier_feats * 2]
return fourier_embs
#----------------------------------------------------------------------------
@persistence.persistent_class
class EqLRConv1d(nn.Module):
def __init__(self,
in_features: int,
out_features: int,
kernel_size: int,
padding: int=0,
stride: int=1,
activation: str='linear',
lr_multiplier: float=1.0,
bias=True,
bias_init=0.0,
):
super().__init__()
self.activation = activation
self.weight = torch.nn.Parameter(torch.randn([out_features, in_features, kernel_size]) / lr_multiplier)
self.bias = torch.nn.Parameter(torch.full([out_features], float(bias_init))) if bias else None
self.weight_gain = lr_multiplier / np.sqrt(in_features * kernel_size)
self.bias_gain = lr_multiplier
self.padding = padding
self.stride = stride
assert self.activation in ['lrelu', 'linear']
def forward(self, x: torch.Tensor) -> torch.Tensor:
assert x.ndim == 3, f"Wrong shape: {x.shape}"
w = self.weight.to(x.dtype) * self.weight_gain # [out_features, in_features, kernel_size]
b = self.bias # [out_features]
if b is not None:
b = b.to(x.dtype)
if self.bias_gain != 1:
b = b * self.bias_gain
y = F.conv1d(input=x, weight=w, bias=b, stride=self.stride, padding=self.padding) # [batch_size, out_features, out_len]
if self.activation == 'linear':
pass
elif self.activation == 'lrelu':
y = F.leaky_relu(y, negative_slope=0.2) # [batch_size, out_features, out_len]
else:
raise NotImplementedError
return y
#----------------------------------------------------------------------------
def sample_frames(cfg: Dict, total_video_len: int, **kwargs) -> np.ndarray:
if cfg['type'] == 'random':
return random_frame_sampling(cfg, total_video_len, **kwargs)
elif cfg['type'] == 'uniform':
return uniform_frame_sampling(cfg, total_video_len, **kwargs)
else:
raise NotImplementedError
#----------------------------------------------------------------------------
def random_frame_sampling(cfg: Dict, total_video_len: int, use_fractional_t: bool=False) -> np.ndarray:
min_time_diff = cfg["num_frames_per_video"] - 1
max_time_diff = min(total_video_len - 1, cfg.get('max_dist', float('inf')))
if type(cfg.get('total_dists')) in (list, tuple):
time_diff_range = [d for d in cfg['total_dists'] if min_time_diff <= d <= max_time_diff]
else:
time_diff_range = range(min_time_diff, max_time_diff)
time_diff: int = random.choice(time_diff_range)
if use_fractional_t:
offset = random.random() * (total_video_len - time_diff - 1)
else:
offset = random.randint(0, total_video_len - time_diff - 1)
frames_idx = [offset]
if cfg["num_frames_per_video"] > 1:
frames_idx.append(offset + time_diff)
if cfg["num_frames_per_video"] > 2:
frames_idx.extend([(offset + t) for t in random.sample(range(1, time_diff), k=cfg["num_frames_per_video"] - 2)])
frames_idx = sorted(frames_idx)
return np.array(frames_idx)
#----------------------------------------------------------------------------
def uniform_frame_sampling(cfg: Dict, total_video_len: int, use_fractional_t: bool=False) -> np.ndarray:
# Step 1: Select the distance between frames
if type(cfg.get('dists_between_frames')) in (list, tuple):
valid_dists = [d for d in cfg['dists_between_frames'] if d <= ['max_dist_between_frames']]
valid_dists = [d for d in valid_dists if (d * cfg['num_frames_per_video'] - d + 1) <= total_video_len]
d = random.choice(valid_dists)
else:
max_dist = min(cfg.get('max_dist', float('inf')), total_video_len // cfg['num_frames_per_video'])
d = random.randint(1, max_dist)
d_total = d * cfg['num_frames_per_video'] - d + 1
# Step 2: Sample.
if use_fractional_t:
offset = random.random() * (total_video_len - d_total)
else:
offset = random.randint(0, total_video_len - d_total)
frames_idx = offset + np.arange(cfg['num_frames_per_video']) * d
return frames_idx
#----------------------------------------------------------------------------
def construct_log_spaced_freqs(max_num_frames: int, skip_small_t_freqs: int=0) -> Tuple[int, torch.Tensor]:
time_resolution = 2 ** np.ceil(np.log2(max_num_frames))
num_fourier_feats = np.ceil(np.log2(time_resolution)).astype(int)
powers = torch.tensor([2]).repeat(num_fourier_feats).pow(torch.arange(num_fourier_feats)) # [num_fourier_feats]
powers = powers[:len(powers) - skip_small_t_freqs] # [num_fourier_feats]
fourier_coefs = powers.unsqueeze(0).float() * np.pi # [1, num_fourier_feats]
return fourier_coefs / time_resolution
#----------------------------------------------------------------------------
|