vizro-ai-UI / actions.py
maxschulz-COL's picture
Update to make ready for xAI
1d14b94
"""Custom actions used within a dashboard."""
import base64
import io
import logging
import black
import dash
import dash_bootstrap_components as dbc
import pandas as pd
from _utils import check_file_extension
from dash.exceptions import PreventUpdate
from langchain_openai import ChatOpenAI
from plotly import graph_objects as go
from vizro.models.types import capture
from vizro_ai import VizroAI
try:
from langchain_anthropic import ChatAnthropic
except ImportError:
ChatAnthropic = None
try:
from langchain_mistralai import ChatMistralAI
except ImportError:
ChatMistralAI = None
logger = logging.getLogger(__name__)
logger.setLevel(logging.INFO) # TODO: remove manual setting and make centrally controlled
SUPPORTED_VENDORS = {
"OpenAI": ChatOpenAI,
"Anthropic": ChatAnthropic,
"Mistral": ChatMistralAI,
"xAI": ChatOpenAI,
}
SUPPORTED_MODELS = {
"OpenAI": [
"gpt-4o-mini",
"gpt-4o",
"gpt-4-turbo",
],
"Anthropic": [
"claude-3-opus-latest",
"claude-3-5-sonnet-latest",
"claude-3-sonnet-20240229",
"claude-3-haiku-20240307",
],
"Mistral": ["mistral-large-latest", "open-mistral-nemo", "codestral-latest"],
"xAI": ["grok-beta"],
}
DEFAULT_TEMPERATURE = 0.1
DEFAULT_RETRY = 3
def get_vizro_ai_plot(user_prompt, df, model, api_key, api_base, vendor_input):
"""VizroAi plot configuration."""
vendor = SUPPORTED_VENDORS[vendor_input]
if vendor_input == "OpenAI":
llm = vendor(
model_name=model, openai_api_key=api_key, openai_api_base=api_base, temperature=DEFAULT_TEMPERATURE
)
if vendor_input == "Anthropic":
llm = vendor(
model=model, anthropic_api_key=api_key, anthropic_api_url=api_base, temperature=DEFAULT_TEMPERATURE
)
if vendor_input == "Mistral":
llm = vendor(model=model, mistral_api_key=api_key, mistral_api_url=api_base, temperature=DEFAULT_TEMPERATURE)
if vendor_input == "xAI":
llm = vendor(model=model, openai_api_key=api_key, openai_api_base=api_base, temperature=DEFAULT_TEMPERATURE)
vizro_ai = VizroAI(model=llm)
ai_outputs = vizro_ai.plot(df, user_prompt, max_debug_retry=DEFAULT_RETRY, return_elements=True)
return ai_outputs
@capture("action")
def run_vizro_ai(user_prompt, n_clicks, data, model, api_key, api_base, vendor_input): # noqa: PLR0913
"""Gets the AI response and adds it to the text window."""
def create_response(ai_response, figure, ai_outputs):
return (ai_response, figure, {"ai_outputs": ai_outputs})
if not n_clicks:
raise PreventUpdate
if not data:
ai_response = "Please upload data to proceed!"
figure = go.Figure()
return create_response(ai_response, figure, ai_outputs=None)
if not api_key:
ai_response = "API key not found. Make sure you enter your API key!"
figure = go.Figure()
return create_response(ai_response, figure, ai_outputs=None)
if api_key.startswith('"'):
ai_response = "Make sure you enter your API key without quotes!"
figure = go.Figure()
return create_response(ai_response, figure, ai_outputs=None)
if api_base is not None and api_base.startswith('"'):
ai_response = "Make sure you enter your API base without quotes!"
figure = go.Figure()
return create_response(ai_response, figure, ai_outputs=None)
try:
logger.info("Attempting chart code.")
df = pd.DataFrame(data["data"])
ai_outputs = get_vizro_ai_plot(
user_prompt=user_prompt,
df=df,
model=model,
api_key=api_key,
api_base=api_base,
vendor_input=vendor_input,
)
ai_code = ai_outputs.code_vizro
figure_vizro = ai_outputs.get_fig_object(data_frame=df, vizro=True)
figure_plotly = ai_outputs.get_fig_object(data_frame=df, vizro=False)
formatted_code = black.format_str(ai_code, mode=black.Mode(line_length=100))
ai_code_outputs = {
"vizro": {"code": ai_outputs.code_vizro, "fig": figure_vizro.to_json()},
"plotly": {"code": ai_outputs.code, "fig": figure_plotly.to_json()},
}
ai_response = "\n".join(["```python", formatted_code, "```"])
logger.info("Successful query produced.")
return create_response(ai_response, figure_vizro, ai_outputs=ai_code_outputs)
except Exception as exc:
logger.debug(exc)
logger.info("Chart creation failed.")
ai_response = f"Sorry, I can't do that. Following Error occurred: {exc}"
figure = go.Figure()
return create_response(ai_response, figure, ai_outputs=None)
@capture("action")
def data_upload_action(contents, filename):
"""Custom data upload action."""
if not contents:
raise PreventUpdate
if not check_file_extension(filename=filename):
return (
{"error_message": "Unsupported file extension.. Make sure to upload either csv or an excel file."},
{"color": "gray"},
{"display": "none"},
)
content_type, content_string = contents.split(",")
try:
decoded = base64.b64decode(content_string)
if filename.endswith(".csv"):
# Handle CSV file
df = pd.read_csv(io.StringIO(decoded.decode("utf-8")))
else:
# Handle Excel file
df = pd.read_excel(io.BytesIO(decoded))
data = df.to_dict("records")
return {"data": data, "filename": filename}, {"cursor": "pointer"}, {}
except Exception as e:
logger.debug(e)
return (
{"error_message": "There was an error processing this file."},
{"color": "gray", "cursor": "default"},
{"display": "none"},
)
@capture("action")
def display_filename(data):
"""Custom action to display uploaded filename."""
if data is None:
raise PreventUpdate
display_message = data.get("filename") or data.get("error_message")
return f"Uploaded file name: '{display_message}'" if "filename" in data else display_message
@capture("action")
def update_table(data):
"""Custom action for updating data."""
if not data:
return dash.no_update
df = pd.DataFrame(data["data"])
filename = data.get("filename") or data.get("error_message")
modal_title = f"Data sample preview for {filename} file"
df_sample = df.sample(5)
table = dbc.Table.from_dataframe(df_sample, striped=False, bordered=True, hover=True)
return table, modal_title