Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -1,4 +1,6 @@
|
|
1 |
import os
|
|
|
|
|
2 |
|
3 |
import gradio as gr
|
4 |
|
@@ -7,7 +9,14 @@ from openai import OpenAI
|
|
7 |
from langchain_community.embeddings.sentence_transformer import SentenceTransformerEmbeddings
|
8 |
from langchain_community.vectorstores import Chroma
|
9 |
|
10 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
11 |
|
12 |
embedding_model = SentenceTransformerEmbeddings(model_name='thenlper/gte-small')
|
13 |
|
@@ -24,6 +33,19 @@ retriever = vectorstore_persisted.as_retriever(
|
|
24 |
search_kwargs={'k': 5}
|
25 |
)
|
26 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
27 |
qna_system_message = """
|
28 |
You are an assistant to a financial services firm who answers user queries on annual reports.
|
29 |
Users will ask questions delimited by triple backticks, that is, ```.
|
@@ -43,9 +65,10 @@ Here are some documents that are relevant to the question.
|
|
43 |
```
|
44 |
"""
|
45 |
|
|
|
46 |
def predict(user_input):
|
47 |
|
48 |
-
relevant_document_chunks = retriever.
|
49 |
context_list = [d.page_content for d in relevant_document_chunks]
|
50 |
context_for_query = ".".join(context_list)
|
51 |
|
@@ -60,7 +83,7 @@ def predict(user_input):
|
|
60 |
|
61 |
try:
|
62 |
response = client.chat.completions.create(
|
63 |
-
model=
|
64 |
messages=prompt,
|
65 |
temperature=0
|
66 |
)
|
@@ -69,12 +92,28 @@ def predict(user_input):
|
|
69 |
|
70 |
except Exception as e:
|
71 |
prediction = e
|
72 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
73 |
return prediction
|
74 |
|
75 |
|
76 |
textbox = gr.Textbox(placeholder="Enter your query here", lines=6)
|
77 |
|
|
|
78 |
demo = gr.Interface(
|
79 |
inputs=textbox, fn=predict, outputs="text",
|
80 |
title="AMA on Tesla 10-K statements",
|
@@ -83,11 +122,11 @@ demo = gr.Interface(
|
|
83 |
examples=[["What was the total revenue of the company in 2022?", "$ 81.46 Billion"],
|
84 |
["Summarize the Management Discussion and Analysis section of the 2021 report in 50 words.", ""],
|
85 |
["What was the company's debt level in 2020?", ""],
|
86 |
-
["Identify 5 key risks identified in the 2019 10k report? Respond with bullet point summaries.", ""]
|
|
|
87 |
],
|
88 |
concurrency_limit=16
|
89 |
)
|
90 |
|
91 |
-
|
92 |
demo.queue()
|
93 |
demo.launch(auth=("demouser", os.getenv('PASSWD')))
|
|
|
1 |
import os
|
2 |
+
import uuid
|
3 |
+
import json
|
4 |
|
5 |
import gradio as gr
|
6 |
|
|
|
9 |
from langchain_community.embeddings.sentence_transformer import SentenceTransformerEmbeddings
|
10 |
from langchain_community.vectorstores import Chroma
|
11 |
|
12 |
+
from huggingface_hub import CommitScheduler
|
13 |
+
from pathlib import Path
|
14 |
+
|
15 |
+
|
16 |
+
client = OpenAI(
|
17 |
+
base_url="https://api.endpoints.anyscale.com/v1",
|
18 |
+
api_key=os.environ['ANYSCALE_API_KEY']
|
19 |
+
)
|
20 |
|
21 |
embedding_model = SentenceTransformerEmbeddings(model_name='thenlper/gte-small')
|
22 |
|
|
|
33 |
search_kwargs={'k': 5}
|
34 |
)
|
35 |
|
36 |
+
# Prepare the logging functionality
|
37 |
+
|
38 |
+
log_file = Path("logs/") / f"data_{uuid.uuid4()}.json"
|
39 |
+
log_folder = log_file.parent
|
40 |
+
|
41 |
+
scheduler = CommitScheduler(
|
42 |
+
repo_id="document-qna-chroma-anyscale-logs",
|
43 |
+
repo_type="dataset",
|
44 |
+
folder_path=log_folder,
|
45 |
+
path_in_repo="data",
|
46 |
+
every=2
|
47 |
+
)
|
48 |
+
|
49 |
qna_system_message = """
|
50 |
You are an assistant to a financial services firm who answers user queries on annual reports.
|
51 |
Users will ask questions delimited by triple backticks, that is, ```.
|
|
|
65 |
```
|
66 |
"""
|
67 |
|
68 |
+
# Define the predict function that runs when 'Submit' is clicked or when a API request is made
|
69 |
def predict(user_input):
|
70 |
|
71 |
+
relevant_document_chunks = retriever.invoke(user_input)
|
72 |
context_list = [d.page_content for d in relevant_document_chunks]
|
73 |
context_for_query = ".".join(context_list)
|
74 |
|
|
|
83 |
|
84 |
try:
|
85 |
response = client.chat.completions.create(
|
86 |
+
model='mlabonne/NeuralHermes-2.5-Mistral-7B',
|
87 |
messages=prompt,
|
88 |
temperature=0
|
89 |
)
|
|
|
92 |
|
93 |
except Exception as e:
|
94 |
prediction = e
|
95 |
+
|
96 |
+
# While the prediction is made, log both the inputs and outputs to a local log file
|
97 |
+
# While writing to the log file, ensure that the commit scheduler is locked to avoid parallel
|
98 |
+
# access
|
99 |
+
|
100 |
+
with scheduler.lock:
|
101 |
+
with log_file.open("a") as f:
|
102 |
+
f.write(json.dumps(
|
103 |
+
{
|
104 |
+
'user_input': user_input,
|
105 |
+
'retrieved_context': context_for_query,
|
106 |
+
'model_response': prediction
|
107 |
+
}
|
108 |
+
))
|
109 |
+
f.write("\n")
|
110 |
+
|
111 |
return prediction
|
112 |
|
113 |
|
114 |
textbox = gr.Textbox(placeholder="Enter your query here", lines=6)
|
115 |
|
116 |
+
# Create the interface
|
117 |
demo = gr.Interface(
|
118 |
inputs=textbox, fn=predict, outputs="text",
|
119 |
title="AMA on Tesla 10-K statements",
|
|
|
122 |
examples=[["What was the total revenue of the company in 2022?", "$ 81.46 Billion"],
|
123 |
["Summarize the Management Discussion and Analysis section of the 2021 report in 50 words.", ""],
|
124 |
["What was the company's debt level in 2020?", ""],
|
125 |
+
["Identify 5 key risks identified in the 2019 10k report? Respond with bullet point summaries.", ""],
|
126 |
+
["What is the view of the management on the future of electric vehicle batteries?",""]
|
127 |
],
|
128 |
concurrency_limit=16
|
129 |
)
|
130 |
|
|
|
131 |
demo.queue()
|
132 |
demo.launch(auth=("demouser", os.getenv('PASSWD')))
|