Update app.py
Browse files
app.py
CHANGED
@@ -3,6 +3,29 @@ from youtube_transcript_api import YouTubeTranscriptApi
|
|
3 |
from transformers import AutoModelForSeq2SeqLM, AutoTokenizer
|
4 |
import gradio as gr
|
5 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
6 |
# Load the Hugging Face model and tokenizer
|
7 |
model_name = "sshleifer/distilbart-cnn-12-6"
|
8 |
model = AutoModelForSeq2SeqLM.from_pretrained(model_name)
|
@@ -26,6 +49,17 @@ def get_transcript(youtube_url):
|
|
26 |
summary_ids = model.generate(inputs["input_ids"], num_beams=4, max_length=100, early_stopping=True)
|
27 |
summary = tokenizer.decode(summary_ids[0], skip_special_tokens=True)
|
28 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
29 |
return summary
|
30 |
|
31 |
# Create a Gradio interface
|
@@ -44,5 +78,7 @@ iface = gr.Interface(
|
|
44 |
concurrency_limit=8
|
45 |
)
|
46 |
|
|
|
|
|
47 |
# Launch the Gradio interface
|
48 |
iface.launch(share=False)
|
|
|
3 |
from transformers import AutoModelForSeq2SeqLM, AutoTokenizer
|
4 |
import gradio as gr
|
5 |
|
6 |
+
import os
|
7 |
+
import uuid
|
8 |
+
import joblib
|
9 |
+
import json
|
10 |
+
|
11 |
+
from huggingface_hub import CommitScheduler
|
12 |
+
from pathlib import Path
|
13 |
+
|
14 |
+
|
15 |
+
Prepare the logging functionality
|
16 |
+
|
17 |
+
log_file = Path("logs/") / f"data_{uuid.uuid4()}.json"
|
18 |
+
log_folder = log_file.parent
|
19 |
+
|
20 |
+
scheduler = CommitScheduler(
|
21 |
+
repo_id="YouTubeSummarizer-log",
|
22 |
+
repo_type="dataset",
|
23 |
+
folder_path=log_folder,
|
24 |
+
path_in_repo="data",
|
25 |
+
every=2
|
26 |
+
)
|
27 |
+
|
28 |
+
|
29 |
# Load the Hugging Face model and tokenizer
|
30 |
model_name = "sshleifer/distilbart-cnn-12-6"
|
31 |
model = AutoModelForSeq2SeqLM.from_pretrained(model_name)
|
|
|
49 |
summary_ids = model.generate(inputs["input_ids"], num_beams=4, max_length=100, early_stopping=True)
|
50 |
summary = tokenizer.decode(summary_ids[0], skip_special_tokens=True)
|
51 |
|
52 |
+
|
53 |
+
with scheduler.lock:
|
54 |
+
with log_file.open("a") as f:
|
55 |
+
f.write(json.dumps(
|
56 |
+
{
|
57 |
+
'YouTube URL': youtube_url,
|
58 |
+
'Summary': summary
|
59 |
+
}
|
60 |
+
))
|
61 |
+
f.write("\n")
|
62 |
+
|
63 |
return summary
|
64 |
|
65 |
# Create a Gradio interface
|
|
|
78 |
concurrency_limit=8
|
79 |
)
|
80 |
|
81 |
+
|
82 |
+
|
83 |
# Launch the Gradio interface
|
84 |
iface.launch(share=False)
|