Spaces:
Runtime error
Runtime error
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,59 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
from PIL import Image, ImageDraw
|
3 |
+
|
4 |
+
# Use a pipeline as a high-level helper
|
5 |
+
from transformers import pipeline
|
6 |
+
|
7 |
+
# pipe = pipeline("object-detection", model="facebook/detr-resnet-50")
|
8 |
+
|
9 |
+
model_path = "../Models/models--facebook--detr-resnet-50/snapshots/1d5f47bd3bdd2c4bbfa585418ffe6da5028b4c0b"
|
10 |
+
|
11 |
+
object_detector = pipeline("object-detection", model=model_path)
|
12 |
+
|
13 |
+
def draw_bounding_boxes(image, object_detections):
|
14 |
+
"""
|
15 |
+
Draws bounding boxes around detected objects on a PIL image.
|
16 |
+
|
17 |
+
Args:
|
18 |
+
image (PIL.Image): The input image.
|
19 |
+
object_detections (list): A list of dictionaries, where each dictionary represents a detected object.
|
20 |
+
Each dictionary should have the following keys:
|
21 |
+
- 'score': the confidence score of the detection
|
22 |
+
- 'label': the label of the detected object
|
23 |
+
- 'box': a dictionary with keys 'xmin', 'ymin', 'xmax', 'ymax'
|
24 |
+
representing the bounding box coordinates.
|
25 |
+
|
26 |
+
Returns:
|
27 |
+
PIL.Image: The input image with bounding boxes drawn around the detected objects.
|
28 |
+
"""
|
29 |
+
draw = ImageDraw.Draw(image)
|
30 |
+
for detection in object_detections:
|
31 |
+
box = detection['box']
|
32 |
+
label = detection['label']
|
33 |
+
score = detection['score']
|
34 |
+
|
35 |
+
# Draw the bounding box
|
36 |
+
draw.rectangle((box['xmin'], box['ymin'], box['xmax'], box['ymax']), outline=(255, 0, 0), width=2)
|
37 |
+
|
38 |
+
# Draw the label and score
|
39 |
+
text = f"{label} ({score:.2f})"
|
40 |
+
draw.text((box['xmin'], box['ymin'] - 20), text, fill=(255, 0, 0))
|
41 |
+
|
42 |
+
return image
|
43 |
+
|
44 |
+
def detect_object(image):
|
45 |
+
# raw_image = Image.open(image)
|
46 |
+
output = object_detector(image)
|
47 |
+
processed_image = draw_bounding_boxes(image, output)
|
48 |
+
return processed_image
|
49 |
+
|
50 |
+
gr.close_all()
|
51 |
+
|
52 |
+
demo = gr.Interface(fn=detect_object,
|
53 |
+
inputs=[gr.Image(label="Select Image", type="pil")],
|
54 |
+
outputs=[gr.Image(label="Processed Image", type="pil")],
|
55 |
+
title="@IT AI Enthusiast (https://www.youtube.com/@itaienthusiast/) - Project 6: Object Detector",
|
56 |
+
description="THIS APPLICATION WILL BE USED TO DETECT OBJECT INSIDE THE PROVIDED INPUT IMGAES",
|
57 |
+
# examples=['Hello Friends, Welcome to my channel. I hope this video helps you understand AI.','Hello friends how are you?'],
|
58 |
+
concurrency_limit=16)
|
59 |
+
demo.launch()
|