1
File size: 4,281 Bytes
05ec195
9c2aa41
 
4d1f328
05ec195
 
 
9c2aa41
05ec195
9c2aa41
 
90db10a
 
 
9c2aa41
bd2216b
9c2aa41
05ec195
 
 
9c2aa41
 
05ec195
 
9c2aa41
 
05ec195
6a2dbfc
eec20c9
05ec195
 
 
 
9c2aa41
05ec195
9c2aa41
 
 
 
 
 
 
 
 
 
 
 
05ec195
 
 
9c2aa41
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c7c90ac
5676a52
 
 
 
 
 
 
 
9c2aa41
 
 
 
05ec195
 
 
9c2aa41
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
import os
import numpy as np
import pandas as pd
import streamlit as st
from huggingface_hub import login
from transformers import pipeline, AutoTokenizer, AutoModelForSequenceClassification
from keybert import KeyBERT
from openai import AzureOpenAI  # new

# ─── Azure OpenAI Client ─────────────────────────────────────────────────────
openai_client = AzureOpenAI(
  api_key = "fbca46bfd8814334be46a2e5c323904c", # use your key here
  api_version = "2023-05-15", # apparently HKUST uses a deprecated version
  azure_endpoint = "https://hkust.azure-api.net" # per HKUST instructions
)

# ─── (your existing cache decorators) ────────────────────────────────────────
@st.cache_resource
def load_sentiment_pipeline():
    model_name = "mayf/amazon_reviews_bert_ft"
    tok = AutoTokenizer.from_pretrained(model_name, use_auth_token=True)
    mdl = AutoModelForSequenceClassification.from_pretrained(model_name, use_auth_token=True)
    return pipeline(
        "sentiment-analysis",
        model=mdl,
        tokenizer=tok,
        return_all_scores=True
    )

@st.cache_resource
def load_keybert_model():
    return KeyBERT(model="all-MiniLM-L6-v2")


def main():
    st.title("📊 Review Sentiment & Keyword Analyzer + GPT Insights")

    # ─── Inputs & Models ──────────────────────────────────────────────────────
    review = st.text_area("Enter your review:")
    if not st.button("Analyze Review"):
        return

    if not review:
        st.warning("Please enter a review to analyze.")
        return

    # ─── Sentiment & Keywords ─────────────────────────────────────────────────
    sentiment_pipeline = load_sentiment_pipeline()
    kw_model = load_keybert_model()

    scores = sentiment_pipeline(review)[0]
    sentiment_results = {item['label']: float(item['score']) for item in scores}
    st.subheader("Sentiment Scores")
    st.json({k: round(v, 4) for k, v in sentiment_results.items()})

    keywords = kw_model.extract_keywords(
        review,
        keyphrase_ngram_range=(1, 2),
        stop_words="english",
        top_n=3
    )
    st.subheader("Top 3 Keywords")
    for kw, score in keywords:
        st.write(f"- **{kw}** (Score: {score:.4f})")

    # ─── Determine Highest Sentiment ───────────────────────────────────────────
    max_label, max_score = max(sentiment_results.items(), key=lambda x: x[1])
    st.subheader("Highest Sentiment")
    st.write(f"{max_label} (Score: {max_score:.4f})")

    # ─── GPT-Driven Analysis & Suggestions ────────────────────────────────────
    st.subheader("GPT Analysis & Seller Suggestions")

    # build a single text prompt for GPT
    prompt = f"""
You are a helpful assistant for e-commerce sellers. 
Here is a product review, its sentiment breakdown, and the top keywords:

Review:
\"\"\"{review}\"\"\"

Sentiment scores:
{sentiment_results}

Top keywords:
{[kw for kw, _ in keywords]}

First, provide a one-paragraph professional analysis of what the customer feels and why (combine sentiment + keywords). 
Then, give 3 detailed, actionable suggestions the seller can implement to improve future reviews or address the feedback.
"""

    # call Azure OpenAI
    response = openai_client.chat.completions.create(
    model="gpt-35-turbo",                     # ← use your deployed model name here
    messages=[
        {"role": "system", "content": "You are a product-feedback analyst."},
        {"role": "user", "content": prompt}
    ],
    temperature=0.7,
    max_tokens=400
)

    # display GPT’s reply
    gpt_reply = response.choices[0].message.content
    st.markdown(gpt_reply)


if __name__ == "__main__":
    # make sure your env vars are set: AZURE_OPENAI_KEY, AZURE_OPENAI_ENDPOINT
    main()