1
File size: 4,724 Bytes
9862828
4d1f328
8151df4
 
 
 
 
 
9862828
8151df4
 
9862828
8151df4
c83a777
 
8151df4
c83a777
8151df4
 
c83a777
8151df4
 
982555a
8151df4
 
 
 
9862828
8151df4
 
9862828
8151df4
 
9862828
c4110d1
8151df4
9862828
 
 
 
ecd3e31
9862828
 
8151df4
6adb177
8151df4
 
c83a777
8151df4
982555a
8151df4
 
 
 
 
fd1d947
982555a
8151df4
 
9862828
8151df4
613c57d
8151df4
9862828
 
 
 
 
 
4d1f328
8151df4
 
 
e537b6d
8151df4
 
 
 
 
9862828
eec20c9
 
613c57d
8151df4
9862828
 
 
8151df4
9862828
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8151df4
9862828
 
 
 
 
 
 
eec20c9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
# FIRST import and FIRST Streamlit command
import streamlit as st
st.set_page_config(
    page_title="Magic Story Generator",
    layout="centered",
    page_icon="📖"
)

# Other imports
import re
import time
import torch
import tempfile
from PIL import Image
from gtts import gTTS
from transformers import pipeline

# --- Constants & Setup ---
st.title("📖✨ Turn Images into Children's Stories")

# --- Model Loading (Cached) ---
@st.cache_resource(show_spinner=False)
def load_models():
    # Image captioning model
    captioner = pipeline(
        "image-to-text",
        model="Salesforce/blip-image-captioning-base",
        device=0 if torch.cuda.is_available() else -1
    )
    
    # Optimized story generation model
    storyteller = pipeline(
        "text-generation",
        model="Qwen/Qwen3-0.5B",
        device_map="auto",
        trust_remote_code=True,
        model_kwargs={"load_in_8bit": True},
        torch_dtype=torch.float16,
        max_new_tokens=200,
        temperature=0.9,
        top_k=50,
        top_p=0.9,
        repetition_penalty=1.1,
        eos_token_id=151645
    )
    
    return captioner, storyteller

caption_pipe, story_pipe = load_models()

# --- Main Application Flow ---
uploaded_image = st.file_uploader(
    "Upload a children's book style image:",
    type=["jpg", "jpeg", "png"]
)

if uploaded_image:
    # Process image
    image = Image.open(uploaded_image).convert("RGB")
    st.image(image, use_column_width=True)

    # Generate caption
    with st.spinner("🔍 Analyzing image..."):
        try:
            caption_result = caption_pipe(image)
            image_caption = caption_result[0].get("generated_text", "").strip()
        except Exception as e:
            st.error(f"❌ Image analysis failed: {str(e)}")
            st.stop()
    
    if not image_caption:
        st.error("❌ Couldn't understand this image. Please try another!")
        st.stop()
    
    st.success(f"**Image Understanding:** {image_caption}")

    # Create story prompt
    story_prompt = (
        f"<|im_start|>system\n"
        f"You're a children's author. Create a short story (100-150 words) based on: {image_caption}\n"
        f"Use simple language and include a moral lesson.<|im_end|>\n"
        f"<|im_start|>assistant\n"
    )

    # Generate story with progress
    progress_bar = st.progress(0)
    status_text = st.empty()
    
    try:
        with st.spinner("📝 Crafting magical story..."):
            start_time = time.time()
            
            def update_progress(step):
                progress = min(step/5, 1.0)  # Simulate progress steps
                progress_bar.progress(progress)
                status_text.text(f"Step {int(step)}/5: {'📖'*int(step)}")
            
            update_progress(1)
            story_result = story_pipe(
                story_prompt,
                do_sample=True,
                num_return_sequences=1
            )
            
            update_progress(4)
            generation_time = time.time() - start_time
            st.info(f"Story generated in {generation_time:.1f} seconds")

            # Process output
            raw_story = story_result[0]['generated_text']
            clean_story = raw_story.split("<|im_start|>assistant\n")[-1]
            clean_story = re.sub(r'<\|.*?\|>', '', clean_story).strip()
            
            # Format story text
            sentences = []
            for sent in re.split(r'(?<=[.!?]) +', clean_story):
                sent = sent.strip()
                if sent:
                    if len(sent) > 1 and not sent.endswith(('.','!','?')):
                        sent += '.'
                    sentences.append(sent[0].upper() + sent[1:])
            
            final_story = ' '.join(sentences)[:600]  # Limit length

            update_progress(5)
            time.sleep(0.5)  # Final progress pause

    except Exception as e:
        st.error(f"❌ Story generation failed: {str(e)}")
        st.stop()

    finally:
        progress_bar.empty()
        status_text.empty()

    # Display story
    st.subheader("✨ Your Magical Story")
    st.write(final_story)

    # Audio conversion
    with st.spinner("🔊 Creating audio version..."):
        try:
            audio = gTTS(text=final_story, lang="en", slow=False)
            with tempfile.NamedTemporaryFile(delete=False, suffix=".mp3") as tmp_file:
                audio.save(tmp_file.name)
                st.audio(tmp_file.name, format="audio/mp3")
        except Exception as e:
            st.error(f"❌ Audio conversion failed: {str(e)}")

# Footer
st.markdown("---")
st.markdown("📚 Made with ♥ by The Story Wizard • [Report Issues](https://example.com)")