1
File size: 3,282 Bytes
05ec195
9c2aa41
 
4d1f328
05ec195
 
 
9c2aa41
05ec195
9c2aa41
 
90db10a
 
 
9c2aa41
bd2216b
05ec195
 
 
9c2aa41
 
05ec195
 
9c2aa41
 
05ec195
6a2dbfc
eec20c9
05ec195
 
 
 
 
9c2aa41
 
 
 
 
 
 
 
 
 
f24967f
05ec195
 
 
9c2aa41
 
f24967f
9c2aa41
 
 
f24967f
 
 
 
 
 
 
 
 
 
 
9c2aa41
 
 
 
 
 
 
 
f24967f
9c2aa41
f24967f
9c2aa41
 
f24967f
 
 
 
 
 
 
9c2aa41
 
c7c90ac
f24967f
 
 
 
 
 
 
 
 
9c2aa41
05ec195
 
9c2aa41
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
import os
import numpy as np
import pandas as pd
import streamlit as st
from huggingface_hub import login
from transformers import pipeline, AutoTokenizer, AutoModelForSequenceClassification
from keybert import KeyBERT
from openai import AzureOpenAI  # new

# ─── Azure OpenAI Client ─────────────────────────────────────────────────────
openai_client = AzureOpenAI(
  api_key = "fbca46bfd8814334be46a2e5c323904c", # use your key here
  api_version = "2023-05-15", # apparently HKUST uses a deprecated version
  azure_endpoint = "https://hkust.azure-api.net" # per HKUST instructions
)

@st.cache_resource
def load_sentiment_pipeline():
    model_name = "mayf/amazon_reviews_bert_ft"
    tok = AutoTokenizer.from_pretrained(model_name, use_auth_token=True)
    mdl = AutoModelForSequenceClassification.from_pretrained(model_name, use_auth_token=True)
    return pipeline(
        "sentiment-analysis",
        model=mdl,
        tokenizer=tok,
        return_all_scores=True
    )

@st.cache_resource
def load_keybert_model():
    return KeyBERT(model="all-MiniLM-L6-v2")

def main():
    st.title("📊 Review Sentiment & Keyword Analyzer + GPT Insights")

    review = st.text_area("Enter your review:")
    if not st.button("Analyze Review"):
        return

    if not review:
        st.warning("Please enter a review to analyze.")
        return

    # Sentiment & Keywords
    sentiment_pipeline = load_sentiment_pipeline()
    kw_model = load_keybert_model()

    scores = sentiment_pipeline(review)[0]
    sentiment_results = {item['label']: float(item['score']) for item in scores}

    st.subheader("Sentiment Scores")
    st.json({k: round(v, 4) for k, v in sentiment_results.items()})

    # Bar chart of sentiment scores
    df_scores = pd.DataFrame.from_dict(sentiment_results, orient='index', columns=['score'])
    df_scores.index.name = 'label'
    st.bar_chart(df_scores)

    # Highest sentiment
    max_label, max_score = max(sentiment_results.items(), key=lambda x: x[1])
    st.subheader("Highest Sentiment")
    st.write(f"**{max_label}** ({max_score:.4f})")

    # Top 3 keywords
    keywords = kw_model.extract_keywords(
        review,
        keyphrase_ngram_range=(1, 2),
        stop_words="english",
        top_n=3
    )
    st.subheader("Top 3 Keywords")
    for kw, score in keywords:
        st.write(f"• {kw} ({score:.4f})")

    # GPT-Driven Analysis & Suggestions (concise)
    st.subheader("GPT Analysis & Seller Suggestions")
    prompt = f"""
You are a concise e-commerce feedback analyst.
Review: """{review}"""
Scores: {sentiment_results}
Keywords: {[kw for kw, _ in keywords]}
Provide:
1. One-sentence summary of customer sentiment.
2. Three bullet-point suggestions, each no more than 8 words.
"""

    response = openai_client.chat.completions.create(
        model="gpt-35-turbo",
        messages=[
            {"role": "system", "content": "You are a product-feedback analyst."},
            {"role": "user", "content": prompt}
        ],
        temperature=0.5,
        max_tokens=120
    )
    gpt_reply = response.choices[0].message.content.strip()
    st.markdown(gpt_reply)

if __name__ == "__main__":
    main()