1 / app.py
mayf's picture
Update app.py
7c97534 verified
raw
history blame
4.33 kB
import os
import numpy as np
import pandas as pd
import streamlit as st
from transformers import (
pipeline,
AutoTokenizer,
AutoModelForSequenceClassification,
AutoModelForSeq2SeqLM
)
from keybert import KeyBERT
# ─── Sentiment & Keyword Models ─────────────────────────────────────────────
@st.cache_resource
def load_sentiment_pipeline():
model_name = "mayf/amazon_reviews_bert_ft"
tok = AutoTokenizer.from_pretrained(model_name, use_auth_token=True)
mdl = AutoModelForSequenceClassification.from_pretrained(
model_name,
use_auth_token=True
)
return pipeline(
"sentiment-analysis",
model=mdl,
tokenizer=tok,
return_all_scores=True
)
@st.cache_resource
def load_keybert_model():
return KeyBERT(model="all-MiniLM-L6-v2")
# ─── FLAN-T5 Generation Pipeline ────────────────────────────────────────────
@st.cache_resource
def load_response_pipeline():
seq_tok = AutoTokenizer.from_pretrained("google/flan-t5-base")
seq_model = AutoModelForSeq2SeqLM.from_pretrained("google/flan-t5-base")
return pipeline(
"text2text-generation",
model=seq_model,
tokenizer=seq_tok,
max_new_tokens=150,
do_sample=False
)
LABEL_MAP = {
"LABEL_0": "Very Negative",
"LABEL_1": "Negative",
"LABEL_2": "Neutral",
"LABEL_3": "Positive",
"LABEL_4": "Very Positive"
}
def main():
st.title("📊 Amazon Review Analyzer")
review = st.text_area("Enter your review:")
if not st.button("Analyze Review"):
return
if not review:
st.warning("Please enter a review to analyze.")
return
# ─── KEEP THIS BLOCK UNCHANGED ─────────────────────────────────────────
# Sentiment Analysis
sentiment_pipeline = load_sentiment_pipeline()
raw_scores = sentiment_pipeline(review)[0]
sentiment_results = {LABEL_MAP[item['label']]: float(item['score']) for item in raw_scores}
# Keyword Extraction
kw_model = load_keybert_model()
keywords = kw_model.extract_keywords(
review,
keyphrase_ngram_range=(1, 2),
stop_words="english",
top_n=3
)
# Display Results
col1, col2 = st.columns(2)
with col1:
st.subheader("Sentiment Scores")
st.json({k: round(v, 4) for k, v in sentiment_results.items()})
with col2:
st.subheader("Top 3 Keywords")
for kw, score in keywords:
st.write(f"• {kw} ({score:.4f})")
# Bar Chart
df_scores = pd.DataFrame.from_dict(
sentiment_results,
orient='index',
columns=['score']
)
df_scores.index.name = 'Sentiment'
st.bar_chart(df_scores)
# Highlight Highest Sentiment
max_label, max_score = max(sentiment_results.items(), key=lambda x: x[1])
st.markdown(f"**Highest Sentiment:** **{max_label}** ({max_score:.4f})")
# ────────────────────────────────────────────────────────────────────
# Generate appropriate reply
response_pipeline = load_response_pipeline()
if max_label in ["Positive", "Very Positive"]:
prompt = (
f"You are a friendly customer success representative. The customer said: \"{review}\". "
"Write a warm, appreciative reply celebrating their positive experience."
)
else:
prompt = (
f"You are a helpful customer support specialist. The customer said: \"{review}\". "
f"Identified issues: {', '.join([kw for kw, _ in keywords])}. "
"First, ask 1-2 clarifying questions to better understand their situation. "
"Then, provide two concrete suggestions or next steps to address these issues, grounded in their feedback."
)
result = response_pipeline(prompt)
reply = result[0]['generated_text'].strip()
st.subheader("Generated Reply")
st.write(reply)
if __name__ == '__main__':
main()