|
import os |
|
import numpy as np |
|
import pandas as pd |
|
import streamlit as st |
|
from huggingface_hub import login |
|
from transformers import pipeline, AutoTokenizer, AutoModelForSequenceClassification |
|
from keybert import KeyBERT |
|
from openai import AzureOpenAI |
|
|
|
|
|
openai_client = AzureOpenAI( |
|
api_key = "fbca46bfd8814334be46a2e5c323904c", |
|
api_version = "2023-05-15", |
|
azure_endpoint = "https://hkust.azure-api.net" |
|
) |
|
|
|
@st.cache_resource |
|
def load_sentiment_pipeline(): |
|
model_name = "mayf/amazon_reviews_bert_ft" |
|
tok = AutoTokenizer.from_pretrained(model_name, use_auth_token=True) |
|
mdl = AutoModelForSequenceClassification.from_pretrained(model_name, use_auth_token=True) |
|
return pipeline( |
|
"sentiment-analysis", |
|
model=mdl, |
|
tokenizer=tok, |
|
return_all_scores=True |
|
) |
|
|
|
@st.cache_resource |
|
def load_keybert_model(): |
|
return KeyBERT(model="all-MiniLM-L6-v2") |
|
|
|
LABEL_MAP = { |
|
"LABEL_0": "Very Negative", |
|
"LABEL_1": "Negative", |
|
"LABEL_2": "Neutral", |
|
"LABEL_3": "Positive", |
|
"LABEL_4": "Very Positive" |
|
} |
|
|
|
|
|
def main(): |
|
st.title("📊 Amazon Review Analyzer") |
|
|
|
review = st.text_area("Enter your review:") |
|
if not st.button("Analyze Review"): |
|
return |
|
if not review: |
|
st.warning("Please enter a review to analyze.") |
|
return |
|
|
|
|
|
progress = st.progress(0) |
|
|
|
|
|
progress.text("Loading models...") |
|
sentiment_pipeline = load_sentiment_pipeline() |
|
kw_model = load_keybert_model() |
|
progress.progress(20) |
|
|
|
|
|
progress.text("Analyzing sentiment...") |
|
raw_scores = sentiment_pipeline(review)[0] |
|
|
|
sentiment_results = {LABEL_MAP[item['label']]: float(item['score']) for item in raw_scores} |
|
progress.progress(40) |
|
|
|
|
|
progress.text("Extracting keywords...") |
|
keywords = kw_model.extract_keywords( |
|
review, |
|
keyphrase_ngram_range=(1, 2), |
|
stop_words="english", |
|
top_n=3 |
|
) |
|
progress.progress(60) |
|
|
|
|
|
col1, col2 = st.columns(2) |
|
with col1: |
|
st.subheader("Sentiment Scores") |
|
st.json({k: round(v, 4) for k, v in sentiment_results.items()}) |
|
with col2: |
|
st.subheader("Top 3 Keywords") |
|
for kw, score in keywords: |
|
st.write(f"• {kw} ({score:.4f})") |
|
|
|
|
|
progress.text("Rendering chart...") |
|
df_scores = pd.DataFrame.from_dict(sentiment_results, orient='index', columns=['score']) |
|
df_scores.index.name = 'Sentiment' |
|
st.bar_chart(df_scores) |
|
progress.progress(80) |
|
|
|
|
|
max_label, max_score = max(sentiment_results.items(), key=lambda x: x[1]) |
|
st.markdown(f"**Highest Sentiment:** **{max_label}** ({max_score:.4f})") |
|
|
|
|
|
progress.text("Generating insights...") |
|
prompt = f""" |
|
You are an analytical amazon feedback expert. |
|
Review: \"{review}\" |
|
Sentiment Scores: {sentiment_results} |
|
Top Keywords: {[kw for kw, _ in keywords]} |
|
Tasks: |
|
1. Analysis: Write a concise paragraph (3 sentences) interpreting customer sentiment by combining the scores and keywords. |
|
2. Recommendations: Three separate paragraphs with actionable suggestions (max 30 words each). |
|
""" |
|
|
|
response = openai_client.chat.completions.create( |
|
model="gpt-35-turbo", |
|
messages=[ |
|
{"role": "system", "content": "You are a product-feedback analyst."}, |
|
{"role": "user", "content": prompt} |
|
], |
|
temperature=0.7, |
|
max_tokens=200 |
|
) |
|
gpt_reply = response.choices[0].message.content.strip() |
|
st.markdown(gpt_reply) |
|
|
|
|
|
progress.progress(100) |
|
progress.text("Done!") |
|
|
|
if __name__ == "__main__": |
|
main() |
|
|
|
|