Update app.py
Browse files
app.py
CHANGED
@@ -10,55 +10,58 @@ import tempfile
|
|
10 |
st.set_page_config(page_title="Storyteller for Kids", layout="centered")
|
11 |
st.title("🖼️ ➡️ 📖 Interactive Storyteller")
|
12 |
|
13 |
-
# —––––––– Load
|
14 |
@st.cache_resource
|
15 |
def load_pipelines():
|
16 |
-
# BLIP-base for captions
|
17 |
captioner = pipeline(
|
18 |
"image-to-text",
|
19 |
model="Salesforce/blip-image-captioning-base",
|
20 |
-
device
|
21 |
)
|
22 |
-
#
|
23 |
-
|
24 |
-
"
|
25 |
-
model="
|
|
|
26 |
device=0
|
27 |
)
|
28 |
-
|
|
|
29 |
dummy = Image.new("RGB", (384, 384), color=(128, 128, 128))
|
30 |
captioner(dummy)
|
31 |
-
|
32 |
-
|
|
|
33 |
|
34 |
-
captioner,
|
35 |
|
36 |
# —––––––– Main UI
|
37 |
uploaded = st.file_uploader("Upload an image:", type=["jpg", "jpeg", "png"])
|
38 |
if uploaded:
|
39 |
-
# 1) Preprocess
|
40 |
image = Image.open(uploaded).convert("RGB")
|
41 |
image = image.resize((384, 384), Image.LANCZOS)
|
42 |
st.image(image, caption="Your image", use_container_width=True)
|
43 |
|
44 |
-
# 2)
|
45 |
-
with st.spinner("🔍 Generating caption
|
46 |
cap = captioner(image)[0]["generated_text"].strip()
|
47 |
st.markdown(f"**Caption:** {cap}")
|
48 |
|
49 |
-
# 3) Build
|
50 |
prompt = (
|
51 |
f"Here is an image description: “{cap}”.\n"
|
52 |
"Write an 80–100 word playful story for 3–10 year-old children that:\n"
|
53 |
-
"1) Describes the scene and subject
|
54 |
-
"2) Explains what
|
55 |
"3) Concludes with a fun, imaginative ending.\n\n"
|
56 |
"Story:"
|
57 |
)
|
58 |
|
59 |
-
# 4) Generate
|
60 |
-
with st.spinner("✍️
|
61 |
-
|
62 |
prompt,
|
63 |
max_new_tokens=120,
|
64 |
do_sample=True,
|
@@ -68,13 +71,13 @@ if uploaded:
|
|
68 |
repetition_penalty=1.2,
|
69 |
no_repeat_ngram_size=3
|
70 |
)
|
71 |
-
story =
|
72 |
|
73 |
st.markdown("**Story:**")
|
74 |
st.write(story)
|
75 |
|
76 |
-
# 5) Text-to-Speech
|
77 |
-
with st.spinner("🔊 Converting to speech
|
78 |
tts = gTTS(text=story, lang="en")
|
79 |
tmp = tempfile.NamedTemporaryFile(suffix=".mp3", delete=False)
|
80 |
tts.write_to_fp(tmp)
|
|
|
10 |
st.set_page_config(page_title="Storyteller for Kids", layout="centered")
|
11 |
st.title("🖼️ ➡️ 📖 Interactive Storyteller")
|
12 |
|
13 |
+
# —––––––– Load & warm pipelines
|
14 |
@st.cache_resource
|
15 |
def load_pipelines():
|
16 |
+
# 1) BLIP-base for captions
|
17 |
captioner = pipeline(
|
18 |
"image-to-text",
|
19 |
model="Salesforce/blip-image-captioning-base",
|
20 |
+
device=0 # set to -1 if you only have CPU
|
21 |
)
|
22 |
+
# 2) DeepSeek-R1-Distill (Qwen-1.5B) for stories
|
23 |
+
ds_storyteller = pipeline(
|
24 |
+
"text-generation",
|
25 |
+
model="deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B",
|
26 |
+
trust_remote_code=True,
|
27 |
device=0
|
28 |
)
|
29 |
+
|
30 |
+
# Warm-up both so the first real request is faster
|
31 |
dummy = Image.new("RGB", (384, 384), color=(128, 128, 128))
|
32 |
captioner(dummy)
|
33 |
+
ds_storyteller("Warm up", max_new_tokens=1)
|
34 |
+
|
35 |
+
return captioner, ds_storyteller
|
36 |
|
37 |
+
captioner, ds_storyteller = load_pipelines()
|
38 |
|
39 |
# —––––––– Main UI
|
40 |
uploaded = st.file_uploader("Upload an image:", type=["jpg", "jpeg", "png"])
|
41 |
if uploaded:
|
42 |
+
# 1) Preprocess & display
|
43 |
image = Image.open(uploaded).convert("RGB")
|
44 |
image = image.resize((384, 384), Image.LANCZOS)
|
45 |
st.image(image, caption="Your image", use_container_width=True)
|
46 |
|
47 |
+
# 2) Generate caption
|
48 |
+
with st.spinner("🔍 Generating caption..."):
|
49 |
cap = captioner(image)[0]["generated_text"].strip()
|
50 |
st.markdown(f"**Caption:** {cap}")
|
51 |
|
52 |
+
# 3) Build prompt
|
53 |
prompt = (
|
54 |
f"Here is an image description: “{cap}”.\n"
|
55 |
"Write an 80–100 word playful story for 3–10 year-old children that:\n"
|
56 |
+
"1) Describes the scene and main subject.\n"
|
57 |
+
"2) Explains what it’s doing and how it feels.\n"
|
58 |
"3) Concludes with a fun, imaginative ending.\n\n"
|
59 |
"Story:"
|
60 |
)
|
61 |
|
62 |
+
# 4) Generate story via DeepSeek
|
63 |
+
with st.spinner("✍️ Generating story with DeepSeek..."):
|
64 |
+
out = ds_storyteller(
|
65 |
prompt,
|
66 |
max_new_tokens=120,
|
67 |
do_sample=True,
|
|
|
71 |
repetition_penalty=1.2,
|
72 |
no_repeat_ngram_size=3
|
73 |
)
|
74 |
+
story = out[0]["generated_text"].strip()
|
75 |
|
76 |
st.markdown("**Story:**")
|
77 |
st.write(story)
|
78 |
|
79 |
+
# 5) Text-to-Speech via gTTS
|
80 |
+
with st.spinner("🔊 Converting to speech..."):
|
81 |
tts = gTTS(text=story, lang="en")
|
82 |
tmp = tempfile.NamedTemporaryFile(suffix=".mp3", delete=False)
|
83 |
tts.write_to_fp(tmp)
|