Update app.py
Browse files
app.py
CHANGED
@@ -4,17 +4,16 @@ import streamlit as st
|
|
4 |
from PIL import Image
|
5 |
from io import BytesIO
|
6 |
from huggingface_hub import InferenceApi, login
|
7 |
-
from transformers import pipeline,
|
8 |
import torch
|
9 |
from gtts import gTTS
|
10 |
import tempfile
|
11 |
|
12 |
# —––––––– Requirements —–––––––
|
13 |
-
#
|
14 |
-
# the Qwen2.5-Omni architecture via `trust_remote_code`.
|
15 |
-
# Install using:
|
16 |
# pip install git+https://github.com/huggingface/transformers.git
|
17 |
-
#
|
|
|
18 |
|
19 |
# —––––––– Page Config —–––––––
|
20 |
st.set_page_config(page_title="Magic Story Generator (Qwen2.5)", layout="centered")
|
@@ -28,27 +27,28 @@ def load_clients():
|
|
28 |
os.environ["HUGGINGFACEHUB_API_TOKEN"] = hf_token
|
29 |
login(hf_token)
|
30 |
|
31 |
-
# 1) BLIP captioning
|
32 |
caption_client = InferenceApi(
|
33 |
repo_id="Salesforce/blip-image-captioning-base",
|
34 |
token=hf_token
|
35 |
)
|
36 |
|
37 |
-
# 2) Load Qwen2.5-Omni
|
38 |
t0 = time.time()
|
39 |
tokenizer = AutoTokenizer.from_pretrained(
|
40 |
"Qwen/Qwen2.5-Omni-7B",
|
41 |
trust_remote_code=True
|
42 |
)
|
43 |
-
model =
|
44 |
"Qwen/Qwen2.5-Omni-7B",
|
45 |
trust_remote_code=True,
|
46 |
device_map="auto",
|
47 |
torch_dtype=torch.bfloat16,
|
48 |
attn_implementation="flash_attention_2"
|
49 |
)
|
|
|
50 |
storyteller = pipeline(
|
51 |
-
task="
|
52 |
model=model,
|
53 |
tokenizer=tokenizer,
|
54 |
device_map="auto",
|
@@ -56,7 +56,8 @@ def load_clients():
|
|
56 |
top_p=0.9,
|
57 |
repetition_penalty=1.2,
|
58 |
no_repeat_ngram_size=3,
|
59 |
-
max_new_tokens=120
|
|
|
60 |
)
|
61 |
load_time = time.time() - t0
|
62 |
st.text(f"✅ Story model loaded in {load_time:.1f}s (cached)")
|
@@ -78,19 +79,15 @@ def generate_story(caption: str) -> str:
|
|
78 |
prompt = (
|
79 |
"You are a creative children's-story author.\n"
|
80 |
f"Image description: “{caption}”\n\n"
|
81 |
-
"Write a coherent 50–100 word story
|
82 |
-
"1. Introduces the main character.\n"
|
83 |
-
"2. Shows a simple problem or discovery.\n"
|
84 |
-
"3. Has a happy resolution.\n"
|
85 |
-
"4. Uses clear language for ages 3–8.\n"
|
86 |
-
"5. Keeps each sentence under 20 words.\n"
|
87 |
)
|
88 |
t0 = time.time()
|
89 |
-
|
90 |
gen_time = time.time() - t0
|
91 |
st.text(f"⏱ Generated in {gen_time:.1f}s on GPU/CPU")
|
92 |
|
93 |
-
story =
|
|
|
94 |
words = story.split()
|
95 |
if len(words) > 100:
|
96 |
story = " ".join(words[:100]) + ('.' if not story.endswith('.') else '')
|
@@ -128,3 +125,4 @@ if uploaded:
|
|
128 |
|
129 |
# Footer
|
130 |
st.markdown("---\n*Made with ❤️ by your friendly story wizard*")
|
|
|
|
4 |
from PIL import Image
|
5 |
from io import BytesIO
|
6 |
from huggingface_hub import InferenceApi, login
|
7 |
+
from transformers import pipeline, AutoModelForCausalLM, AutoTokenizer
|
8 |
import torch
|
9 |
from gtts import gTTS
|
10 |
import tempfile
|
11 |
|
12 |
# —––––––– Requirements —–––––––
|
13 |
+
# Install transformers with remote code support:
|
|
|
|
|
14 |
# pip install git+https://github.com/huggingface/transformers.git
|
15 |
+
# plus:
|
16 |
+
# pip install streamlit torch accelerate huggingface_hub sentencepiece pillow gTTS
|
17 |
|
18 |
# —––––––– Page Config —–––––––
|
19 |
st.set_page_config(page_title="Magic Story Generator (Qwen2.5)", layout="centered")
|
|
|
27 |
os.environ["HUGGINGFACEHUB_API_TOKEN"] = hf_token
|
28 |
login(hf_token)
|
29 |
|
30 |
+
# 1) BLIP captioning
|
31 |
caption_client = InferenceApi(
|
32 |
repo_id="Salesforce/blip-image-captioning-base",
|
33 |
token=hf_token
|
34 |
)
|
35 |
|
36 |
+
# 2) Load Qwen2.5-Omni causal LM
|
37 |
t0 = time.time()
|
38 |
tokenizer = AutoTokenizer.from_pretrained(
|
39 |
"Qwen/Qwen2.5-Omni-7B",
|
40 |
trust_remote_code=True
|
41 |
)
|
42 |
+
model = AutoModelForCausalLM.from_pretrained(
|
43 |
"Qwen/Qwen2.5-Omni-7B",
|
44 |
trust_remote_code=True,
|
45 |
device_map="auto",
|
46 |
torch_dtype=torch.bfloat16,
|
47 |
attn_implementation="flash_attention_2"
|
48 |
)
|
49 |
+
# 3) Text-generation pipeline
|
50 |
storyteller = pipeline(
|
51 |
+
task="text-generation",
|
52 |
model=model,
|
53 |
tokenizer=tokenizer,
|
54 |
device_map="auto",
|
|
|
56 |
top_p=0.9,
|
57 |
repetition_penalty=1.2,
|
58 |
no_repeat_ngram_size=3,
|
59 |
+
max_new_tokens=120,
|
60 |
+
return_full_text=False
|
61 |
)
|
62 |
load_time = time.time() - t0
|
63 |
st.text(f"✅ Story model loaded in {load_time:.1f}s (cached)")
|
|
|
79 |
prompt = (
|
80 |
"You are a creative children's-story author.\n"
|
81 |
f"Image description: “{caption}”\n\n"
|
82 |
+
"Write a coherent 50–100 word story."
|
|
|
|
|
|
|
|
|
|
|
83 |
)
|
84 |
t0 = time.time()
|
85 |
+
outputs = storyteller(prompt)
|
86 |
gen_time = time.time() - t0
|
87 |
st.text(f"⏱ Generated in {gen_time:.1f}s on GPU/CPU")
|
88 |
|
89 |
+
story = outputs[0]["generated_text"].strip()
|
90 |
+
# Enforce ≤100 words
|
91 |
words = story.split()
|
92 |
if len(words) > 100:
|
93 |
story = " ".join(words[:100]) + ('.' if not story.endswith('.') else '')
|
|
|
125 |
|
126 |
# Footer
|
127 |
st.markdown("---\n*Made with ❤️ by your friendly story wizard*")
|
128 |
+
|