Update app.py
Browse files
app.py
CHANGED
@@ -2,18 +2,10 @@ import os
|
|
2 |
import numpy as np
|
3 |
import pandas as pd
|
4 |
import streamlit as st
|
5 |
-
from
|
6 |
-
from transformers import pipeline, AutoTokenizer, AutoModelForSequenceClassification
|
7 |
from keybert import KeyBERT
|
8 |
-
from openai import AzureOpenAI # new
|
9 |
-
|
10 |
-
# ─── Azure OpenAI Client ─────────────────────────────────────────────────────
|
11 |
-
openai_client = AzureOpenAI(
|
12 |
-
api_key = "fbca46bfd8814334be46a2e5c323904c", # use your key here
|
13 |
-
api_version = "2023-05-15", # apparently HKUST uses a deprecated version
|
14 |
-
azure_endpoint = "https://hkust.azure-api.net" # per HKUST instructions
|
15 |
-
)
|
16 |
|
|
|
17 |
@st.cache_resource
|
18 |
def load_sentiment_pipeline():
|
19 |
model_name = "mayf/amazon_reviews_bert_ft"
|
@@ -30,6 +22,16 @@ def load_sentiment_pipeline():
|
|
30 |
def load_keybert_model():
|
31 |
return KeyBERT(model="all-MiniLM-L6-v2")
|
32 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
33 |
LABEL_MAP = {
|
34 |
"LABEL_0": "Very Negative",
|
35 |
"LABEL_1": "Negative",
|
@@ -49,23 +51,22 @@ def main():
|
|
49 |
st.warning("Please enter a review to analyze.")
|
50 |
return
|
51 |
|
52 |
-
# Initialize progress bar
|
53 |
progress = st.progress(0)
|
54 |
|
55 |
# Load models
|
56 |
progress.text("Loading models...")
|
57 |
sentiment_pipeline = load_sentiment_pipeline()
|
58 |
kw_model = load_keybert_model()
|
|
|
59 |
progress.progress(20)
|
60 |
|
61 |
-
#
|
62 |
progress.text("Analyzing sentiment...")
|
63 |
raw_scores = sentiment_pipeline(review)[0]
|
64 |
-
# Map labels
|
65 |
sentiment_results = {LABEL_MAP[item['label']]: float(item['score']) for item in raw_scores}
|
66 |
progress.progress(40)
|
67 |
|
68 |
-
#
|
69 |
progress.text("Extracting keywords...")
|
70 |
keywords = kw_model.extract_keywords(
|
71 |
review,
|
@@ -75,7 +76,7 @@ def main():
|
|
75 |
)
|
76 |
progress.progress(60)
|
77 |
|
78 |
-
# Display
|
79 |
col1, col2 = st.columns(2)
|
80 |
with col1:
|
81 |
st.subheader("Sentiment Scores")
|
@@ -85,7 +86,7 @@ def main():
|
|
85 |
for kw, score in keywords:
|
86 |
st.write(f"• {kw} ({score:.4f})")
|
87 |
|
88 |
-
#
|
89 |
progress.text("Rendering chart...")
|
90 |
df_scores = pd.DataFrame.from_dict(sentiment_results, orient='index', columns=['score'])
|
91 |
df_scores.index.name = 'Sentiment'
|
@@ -96,33 +97,25 @@ def main():
|
|
96 |
max_label, max_score = max(sentiment_results.items(), key=lambda x: x[1])
|
97 |
st.markdown(f"**Highest Sentiment:** **{max_label}** ({max_score:.4f})")
|
98 |
|
99 |
-
#
|
100 |
progress.text("Generating insights...")
|
101 |
prompt = f"""
|
102 |
You are an analytical amazon feedback expert.
|
103 |
Review: \"{review}\"
|
104 |
Sentiment Scores: {sentiment_results}
|
105 |
Top Keywords: {[kw for kw, _ in keywords]}
|
|
|
106 |
Tasks:
|
107 |
1. Analysis: Write a concise paragraph (3 sentences) interpreting customer sentiment by combining the scores and keywords.
|
108 |
2. Recommendations: Three separate paragraphs with actionable suggestions (max 30 words each).
|
109 |
"""
|
|
|
|
|
110 |
|
111 |
-
response = openai_client.chat.completions.create(
|
112 |
-
model="gpt-35-turbo",
|
113 |
-
messages=[
|
114 |
-
{"role": "system", "content": "You are a product-feedback analyst."},
|
115 |
-
{"role": "user", "content": prompt}
|
116 |
-
],
|
117 |
-
temperature=0.7,
|
118 |
-
max_tokens=200
|
119 |
-
)
|
120 |
-
gpt_reply = response.choices[0].message.content.strip()
|
121 |
-
st.markdown(gpt_reply)
|
122 |
-
|
123 |
-
# Complete
|
124 |
progress.progress(100)
|
125 |
progress.text("Done!")
|
126 |
|
|
|
127 |
if __name__ == "__main__":
|
128 |
main()
|
|
|
|
2 |
import numpy as np
|
3 |
import pandas as pd
|
4 |
import streamlit as st
|
5 |
+
from transformers import pipeline, AutoTokenizer, AutoModelForSeq2SeqLM
|
|
|
6 |
from keybert import KeyBERT
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
7 |
|
8 |
+
# ─── Sentiment & Keyword Models ─────────────────────────────────────────────
|
9 |
@st.cache_resource
|
10 |
def load_sentiment_pipeline():
|
11 |
model_name = "mayf/amazon_reviews_bert_ft"
|
|
|
22 |
def load_keybert_model():
|
23 |
return KeyBERT(model="all-MiniLM-L6-v2")
|
24 |
|
25 |
+
# ─── FLAN-T5 Generation Pipeline ────────────────────────────────────────────
|
26 |
+
@st.cache_resource
|
27 |
+
def load_flant5_pipeline():
|
28 |
+
# High-level helper for text2text generation
|
29 |
+
return pipeline(
|
30 |
+
"text2text-generation",
|
31 |
+
model="google/flan-t5-base",
|
32 |
+
tokenizer="google/flan-t5-base"
|
33 |
+
)
|
34 |
+
|
35 |
LABEL_MAP = {
|
36 |
"LABEL_0": "Very Negative",
|
37 |
"LABEL_1": "Negative",
|
|
|
51 |
st.warning("Please enter a review to analyze.")
|
52 |
return
|
53 |
|
|
|
54 |
progress = st.progress(0)
|
55 |
|
56 |
# Load models
|
57 |
progress.text("Loading models...")
|
58 |
sentiment_pipeline = load_sentiment_pipeline()
|
59 |
kw_model = load_keybert_model()
|
60 |
+
generation_pipeline = load_flant5_pipeline()
|
61 |
progress.progress(20)
|
62 |
|
63 |
+
# Sentiment
|
64 |
progress.text("Analyzing sentiment...")
|
65 |
raw_scores = sentiment_pipeline(review)[0]
|
|
|
66 |
sentiment_results = {LABEL_MAP[item['label']]: float(item['score']) for item in raw_scores}
|
67 |
progress.progress(40)
|
68 |
|
69 |
+
# Keywords
|
70 |
progress.text("Extracting keywords...")
|
71 |
keywords = kw_model.extract_keywords(
|
72 |
review,
|
|
|
76 |
)
|
77 |
progress.progress(60)
|
78 |
|
79 |
+
# Display
|
80 |
col1, col2 = st.columns(2)
|
81 |
with col1:
|
82 |
st.subheader("Sentiment Scores")
|
|
|
86 |
for kw, score in keywords:
|
87 |
st.write(f"• {kw} ({score:.4f})")
|
88 |
|
89 |
+
# Chart
|
90 |
progress.text("Rendering chart...")
|
91 |
df_scores = pd.DataFrame.from_dict(sentiment_results, orient='index', columns=['score'])
|
92 |
df_scores.index.name = 'Sentiment'
|
|
|
97 |
max_label, max_score = max(sentiment_results.items(), key=lambda x: x[1])
|
98 |
st.markdown(f"**Highest Sentiment:** **{max_label}** ({max_score:.4f})")
|
99 |
|
100 |
+
# FLAN-T5 Analysis & Suggestions
|
101 |
progress.text("Generating insights...")
|
102 |
prompt = f"""
|
103 |
You are an analytical amazon feedback expert.
|
104 |
Review: \"{review}\"
|
105 |
Sentiment Scores: {sentiment_results}
|
106 |
Top Keywords: {[kw for kw, _ in keywords]}
|
107 |
+
|
108 |
Tasks:
|
109 |
1. Analysis: Write a concise paragraph (3 sentences) interpreting customer sentiment by combining the scores and keywords.
|
110 |
2. Recommendations: Three separate paragraphs with actionable suggestions (max 30 words each).
|
111 |
"""
|
112 |
+
output = generation_pipeline(prompt, max_length=200, do_sample=False)[0]['generated_text']
|
113 |
+
st.markdown(output)
|
114 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
115 |
progress.progress(100)
|
116 |
progress.text("Done!")
|
117 |
|
118 |
+
|
119 |
if __name__ == "__main__":
|
120 |
main()
|
121 |
+
|