Update app.py
Browse files
app.py
CHANGED
@@ -1,54 +1,3 @@
|
|
1 |
-
import os
|
2 |
-
import numpy as np
|
3 |
-
import pandas as pd
|
4 |
-
import streamlit as st
|
5 |
-
from transformers import (
|
6 |
-
pipeline,
|
7 |
-
AutoTokenizer,
|
8 |
-
AutoModelForSequenceClassification,
|
9 |
-
AutoModelForSeq2SeqLM
|
10 |
-
)
|
11 |
-
from keybert import KeyBERT
|
12 |
-
|
13 |
-
# ─── Sentiment & Keyword Models ─────────────────────────────────────────────
|
14 |
-
@st.cache_resource
|
15 |
-
def load_sentiment_pipeline():
|
16 |
-
model_name = "mayf/amazon_reviews_bert_ft"
|
17 |
-
tok = AutoTokenizer.from_pretrained(model_name, use_auth_token=True)
|
18 |
-
mdl = AutoModelForSequenceClassification.from_pretrained(
|
19 |
-
model_name,
|
20 |
-
use_auth_token=True
|
21 |
-
)
|
22 |
-
return pipeline(
|
23 |
-
"sentiment-analysis",
|
24 |
-
model=mdl,
|
25 |
-
tokenizer=tok,
|
26 |
-
return_all_scores=True
|
27 |
-
)
|
28 |
-
|
29 |
-
@st.cache_resource
|
30 |
-
def load_keybert_model():
|
31 |
-
return KeyBERT(model="all-MiniLM-L6-v2")
|
32 |
-
|
33 |
-
# ─── FLAN-T5 Generation Pipeline ────────────────────────────────────────────
|
34 |
-
@st.cache_resource
|
35 |
-
def load_flant5_pipeline():
|
36 |
-
seq_tok = AutoTokenizer.from_pretrained("google/flan-t5-base")
|
37 |
-
seq_model = AutoModelForSeq2SeqLM.from_pretrained("google/flan-t5-base")
|
38 |
-
return pipeline(
|
39 |
-
"text2text-generation",
|
40 |
-
model=seq_model,
|
41 |
-
tokenizer=seq_tok,
|
42 |
-
max_new_tokens=300,
|
43 |
-
do_sample=True,
|
44 |
-
temperature=0.7
|
45 |
-
)
|
46 |
-
|
47 |
-
LABEL_MAP = {
|
48 |
-
"LABEL_0": "Very Negative",
|
49 |
-
"LABEL_1": "Negative",
|
50 |
-
"LABEL_2": "Neutral",
|
51 |
-
"LABEL_3": "Positive",
|
52 |
"LABEL_4": "Very Positive"
|
53 |
}
|
54 |
|
@@ -122,18 +71,9 @@ You are a senior product quality and customer experience specialist at an e-comm
|
|
122 |
Customer Review:
|
123 |
"{review}"
|
124 |
|
125 |
-
|
126 |
-
For each recommendation, include:
|
127 |
-
1. **Recommendation Title**: a concise summary of the action.
|
128 |
-
2. The specific issue or frustration extracted from the review.
|
129 |
-
3. Why this action addresses the pain point and how it will improve the customer experience.
|
130 |
-
4. A bullet-point list of 3–5 clear steps for operations or product teams to execute.
|
131 |
-
5. How to measure the impact.
|
132 |
-
|
133 |
-
Write each recommendation in at least 5–7 sentences, grounding every detail in the customer's own words. Avoid generic advice—focus on specifics from the review.
|
134 |
|
135 |
-
|
136 |
-
"""
|
137 |
response = generation_pipeline(prompt)
|
138 |
detailed = response[0]["generated_text"]
|
139 |
st.markdown(detailed)
|
@@ -148,4 +88,3 @@ Recommendations:
|
|
148 |
if __name__ == "__main__":
|
149 |
main()
|
150 |
|
151 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
"LABEL_4": "Very Positive"
|
2 |
}
|
3 |
|
|
|
71 |
Customer Review:
|
72 |
"{review}"
|
73 |
|
74 |
+
Instructions: Analyze the feedback and provide three distinct, actionable improvement recommendations. For each, include a concise title and a detailed explanation in 5–7 sentences, plus a bullet list of 3–5 execution steps and a measure of impact.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
75 |
|
76 |
+
**Output only the recommendations as numbered items (1–3).*"""
|
|
|
77 |
response = generation_pipeline(prompt)
|
78 |
detailed = response[0]["generated_text"]
|
79 |
st.markdown(detailed)
|
|
|
88 |
if __name__ == "__main__":
|
89 |
main()
|
90 |
|
|