Update app.py
Browse files
app.py
CHANGED
@@ -30,9 +30,14 @@ def load_sentiment_pipeline():
|
|
30 |
def load_keybert_model():
|
31 |
return KeyBERT(model="all-MiniLM-L6-v2")
|
32 |
|
33 |
-
# ───
|
34 |
@st.cache_resource
|
35 |
def load_response_pipeline():
|
|
|
|
|
|
|
|
|
|
|
36 |
seq_tok = AutoTokenizer.from_pretrained("google/flan-t5-base")
|
37 |
seq_model = AutoModelForSeq2SeqLM.from_pretrained("google/flan-t5-base")
|
38 |
return pipeline(
|
@@ -106,7 +111,7 @@ def main():
|
|
106 |
if max_label in ["Positive", "Very Positive"]:
|
107 |
prompt = (
|
108 |
f"You are a friendly customer success representative. The customer said: \"{review}\". "
|
109 |
-
"Write
|
110 |
)
|
111 |
else:
|
112 |
prompt = (
|
|
|
30 |
def load_keybert_model():
|
31 |
return KeyBERT(model="all-MiniLM-L6-v2")
|
32 |
|
33 |
+
# ─── BlenderBot Response Pipeline ───────────────────────────────────────────
|
34 |
@st.cache_resource
|
35 |
def load_response_pipeline():
|
36 |
+
# High-level helper using BlenderBot 400M Distill
|
37 |
+
return pipeline(
|
38 |
+
"text2text-generation",
|
39 |
+
model="facebook/blenderbot-400M-distill"
|
40 |
+
):
|
41 |
seq_tok = AutoTokenizer.from_pretrained("google/flan-t5-base")
|
42 |
seq_model = AutoModelForSeq2SeqLM.from_pretrained("google/flan-t5-base")
|
43 |
return pipeline(
|
|
|
111 |
if max_label in ["Positive", "Very Positive"]:
|
112 |
prompt = (
|
113 |
f"You are a friendly customer success representative. The customer said: \"{review}\". "
|
114 |
+
"Write a warm, appreciative reply celebrating their positive experience."
|
115 |
)
|
116 |
else:
|
117 |
prompt = (
|