Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,63 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
from PIL import Image
|
3 |
+
from transformers import pipeline
|
4 |
+
from gtts import gTTS
|
5 |
+
import tempfile
|
6 |
+
|
7 |
+
# —––––––– Page config
|
8 |
+
st.set_page_config(page_title="Storyteller for Kids", layout="centered")
|
9 |
+
st.title("🖼️ ➡️ 📖 Interactive Storyteller")
|
10 |
+
|
11 |
+
# —––––––– Cache model loading
|
12 |
+
@st.cache_resource
|
13 |
+
def load_pipelines():
|
14 |
+
# 1) Image captioning
|
15 |
+
captioner = pipeline(
|
16 |
+
"image-captioning",
|
17 |
+
model="Salesforce/blip-image-captioning-base"
|
18 |
+
)
|
19 |
+
# 2) Story generation with Flan-T5
|
20 |
+
storyteller = pipeline(
|
21 |
+
"text2text-generation",
|
22 |
+
model="google/flan-t5-base"
|
23 |
+
)
|
24 |
+
return captioner, storyteller
|
25 |
+
|
26 |
+
captioner, storyteller = load_pipelines()
|
27 |
+
|
28 |
+
# —––––––– Image upload
|
29 |
+
uploaded = st.file_uploader("Upload an image:", type=["jpg", "jpeg", "png"])
|
30 |
+
if uploaded:
|
31 |
+
image = Image.open(uploaded).convert("RGB")
|
32 |
+
st.image(image, caption="Your image", use_column_width=True)
|
33 |
+
|
34 |
+
# —––––––– 1. Caption
|
35 |
+
with st.spinner("🔍 Looking at the image..."):
|
36 |
+
cap = captioner(image)[0]["generated_text"]
|
37 |
+
st.markdown(f"**Caption:** {cap}")
|
38 |
+
|
39 |
+
# —––––––– 2. Story generation
|
40 |
+
prompt = (
|
41 |
+
"Write a playful, 50–100 word story for 3–10 year-old children "
|
42 |
+
f"based on this description:\n\n“{cap}”\n\nStory:"
|
43 |
+
)
|
44 |
+
with st.spinner("✍️ Writing a story..."):
|
45 |
+
out = storyteller(
|
46 |
+
prompt,
|
47 |
+
max_length=200,
|
48 |
+
do_sample=True,
|
49 |
+
top_p=0.9,
|
50 |
+
temperature=0.8,
|
51 |
+
num_return_sequences=1
|
52 |
+
)
|
53 |
+
story = out[0]["generated_text"].strip()
|
54 |
+
st.markdown("**Story:**")
|
55 |
+
st.write(story)
|
56 |
+
|
57 |
+
# —––––––– 3. Text-to-Speech
|
58 |
+
with st.spinner("🔊 Converting to speech..."):
|
59 |
+
tts = gTTS(story, lang="en")
|
60 |
+
tmp = tempfile.NamedTemporaryFile(suffix=".mp3", delete=False)
|
61 |
+
tts.write_to_fp(tmp)
|
62 |
+
tmp.flush()
|
63 |
+
st.audio(tmp.name, format="audio/mp3")
|