Update app.py
Browse files
app.py
CHANGED
@@ -3,65 +3,76 @@
|
|
3 |
import streamlit as st
|
4 |
from PIL import Image
|
5 |
from transformers import pipeline
|
6 |
-
|
7 |
import tempfile
|
8 |
|
9 |
# —––––––– Page config
|
10 |
st.set_page_config(page_title="Storyteller for Kids", layout="centered")
|
11 |
st.title("🖼️ ➡️ 📖 Interactive Storyteller")
|
12 |
|
13 |
-
# —–––––––
|
14 |
@st.cache_resource
|
15 |
def load_pipelines():
|
16 |
-
# 1)
|
17 |
captioner = pipeline(
|
18 |
"image-to-text",
|
19 |
-
model="Salesforce/blip-image-captioning-
|
|
|
20 |
)
|
21 |
-
# 2)
|
22 |
storyteller = pipeline(
|
23 |
"text-generation",
|
24 |
-
model="EleutherAI/gpt-neo-
|
25 |
-
device
|
26 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
27 |
return captioner, storyteller
|
28 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
29 |
captioner, storyteller = load_pipelines()
|
|
|
30 |
|
31 |
-
# —––––––– Image upload
|
32 |
uploaded = st.file_uploader("Upload an image:", type=["jpg", "jpeg", "png"])
|
33 |
if uploaded:
|
|
|
34 |
image = Image.open(uploaded).convert("RGB")
|
35 |
-
|
|
|
36 |
|
37 |
-
#
|
38 |
-
with st.spinner("🔍
|
39 |
-
|
40 |
-
cap = cap_outputs[0].get("generated_text", "").strip()
|
41 |
st.markdown(f"**Caption:** {cap}")
|
42 |
|
43 |
-
#
|
44 |
prompt = (
|
45 |
-
"Write a
|
46 |
-
f"based on this description:\n\n“{cap}”\n\nStory:"
|
47 |
)
|
48 |
-
with st.spinner("✍️
|
49 |
out = storyteller(
|
50 |
prompt,
|
51 |
-
max_new_tokens=120,
|
52 |
-
do_sample=
|
53 |
-
top_p=0.9,
|
54 |
-
temperature=0.8,
|
55 |
-
num_return_sequences=1
|
56 |
)
|
57 |
story = out[0]["generated_text"].strip()
|
58 |
st.markdown("**Story:**")
|
59 |
st.write(story)
|
60 |
|
61 |
-
#
|
62 |
with st.spinner("🔊 Converting to speech..."):
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
st.audio(tmp.name, format="audio/mp3")
|
|
|
3 |
import streamlit as st
|
4 |
from PIL import Image
|
5 |
from transformers import pipeline
|
6 |
+
import pyttsx3
|
7 |
import tempfile
|
8 |
|
9 |
# —––––––– Page config
|
10 |
st.set_page_config(page_title="Storyteller for Kids", layout="centered")
|
11 |
st.title("🖼️ ➡️ 📖 Interactive Storyteller")
|
12 |
|
13 |
+
# —––––––– Model loading + warm-up
|
14 |
@st.cache_resource
|
15 |
def load_pipelines():
|
16 |
+
# 1) Smaller BLIP for captions
|
17 |
captioner = pipeline(
|
18 |
"image-to-text",
|
19 |
+
model="Salesforce/blip-image-captioning-small",
|
20 |
+
device=0
|
21 |
)
|
22 |
+
# 2) Small GPT-Neo for stories
|
23 |
storyteller = pipeline(
|
24 |
"text-generation",
|
25 |
+
model="EleutherAI/gpt-neo-125M",
|
26 |
+
device=0
|
27 |
)
|
28 |
+
|
29 |
+
# Warm up both models once
|
30 |
+
dummy = Image.new("RGB", (384,384), color=(128,128,128))
|
31 |
+
captioner(dummy)
|
32 |
+
storyteller("Hello", max_new_tokens=1)
|
33 |
+
|
34 |
return captioner, storyteller
|
35 |
|
36 |
+
# —––––––– TTS engine init (offline)
|
37 |
+
@st.cache_resource
|
38 |
+
def init_tts_engine():
|
39 |
+
engine = pyttsx3.init()
|
40 |
+
engine.setProperty('rate', 150)
|
41 |
+
return engine
|
42 |
+
|
43 |
captioner, storyteller = load_pipelines()
|
44 |
+
tts_engine = init_tts_engine()
|
45 |
|
46 |
+
# —––––––– Image upload & processing
|
47 |
uploaded = st.file_uploader("Upload an image:", type=["jpg", "jpeg", "png"])
|
48 |
if uploaded:
|
49 |
+
# 1) Load + downsize
|
50 |
image = Image.open(uploaded).convert("RGB")
|
51 |
+
image = image.resize((384, 384), Image.LANCZOS)
|
52 |
+
st.image(image, caption="Your image", use_container_width=True)
|
53 |
|
54 |
+
# 2) Caption
|
55 |
+
with st.spinner("🔍 Generating caption..."):
|
56 |
+
cap = captioner(image)[0]["generated_text"].strip()
|
|
|
57 |
st.markdown(f"**Caption:** {cap}")
|
58 |
|
59 |
+
# 3) Story
|
60 |
prompt = (
|
61 |
+
f"Write a fun, 80–100 word story for kids based on:\n\n“{cap}”\n\nStory:"
|
|
|
62 |
)
|
63 |
+
with st.spinner("✍️ Generating story..."):
|
64 |
out = storyteller(
|
65 |
prompt,
|
66 |
+
max_new_tokens=120,
|
67 |
+
do_sample=False, # greedy = fastest
|
|
|
|
|
|
|
68 |
)
|
69 |
story = out[0]["generated_text"].strip()
|
70 |
st.markdown("**Story:**")
|
71 |
st.write(story)
|
72 |
|
73 |
+
# 4) TTS
|
74 |
with st.spinner("🔊 Converting to speech..."):
|
75 |
+
tmp = tempfile.NamedTemporaryFile(suffix=".wav", delete=False)
|
76 |
+
tts_engine.save_to_file(story, tmp.name)
|
77 |
+
tts_engine.runAndWait()
|
78 |
+
st.audio(tmp.name)
|
|