import os import numpy as np import pandas as pd import streamlit as st from transformers import ( pipeline, AutoTokenizer, AutoModelForSequenceClassification, AutoModelForSeq2SeqLM ) from keybert import KeyBERT # ─── Sentiment & Keyword Models ───────────────────────────────────────────── @st.cache_resource def load_sentiment_pipeline(): model_name = "mayf/amazon_reviews_bert_ft" tok = AutoTokenizer.from_pretrained(model_name, use_auth_token=True) mdl = AutoModelForSequenceClassification.from_pretrained( model_name, use_auth_token=True ) return pipeline( "sentiment-analysis", model=mdl, tokenizer=tok, return_all_scores=True ) @st.cache_resource def load_keybert_model(): return KeyBERT(model="all-MiniLM-L6-v2") # ─── FLAN-T5 Generation Pipeline ──────────────────────────────────────────── @st.cache_resource def load_flant5_pipeline(): seq_tok = AutoTokenizer.from_pretrained("google/flan-t5-base") seq_model = AutoModelForSeq2SeqLM.from_pretrained("google/flan-t5-base") return pipeline( "text2text-generation", model=seq_model, tokenizer=seq_tok, max_new_tokens=300, do_sample=True, temperature=0.7 ) LABEL_MAP = { "LABEL_0": "Very Negative", "LABEL_1": "Negative", "LABEL_2": "Neutral", "LABEL_3": "Positive", "LABEL_4": "Very Positive" } def main(): st.title("📊 Amazon Review Analyzer") review = st.text_area("Enter your review:") if not st.button("Analyze Review"): return if not review: st.warning("Please enter a review to analyze.") return progress = st.progress(0) # Load models progress.text("Loading models...") sentiment_pipeline = load_sentiment_pipeline() kw_model = load_keybert_model() generation_pipeline = load_flant5_pipeline() progress.progress(20) # Sentiment Analysis progress.text("Analyzing sentiment...") raw_scores = sentiment_pipeline(review)[0] sentiment_results = {LABEL_MAP[item['label']]: float(item['score']) for item in raw_scores} progress.progress(40) # Keyword Extraction progress.text("Extracting keywords...") keywords = kw_model.extract_keywords( review, keyphrase_ngram_range=(1, 2), stop_words="english", top_n=3 ) progress.progress(60) # Display Results col1, col2 = st.columns(2) with col1: st.subheader("Sentiment Scores") st.json({k: round(v, 4) for k, v in sentiment_results.items()}) with col2: st.subheader("Top 3 Keywords") for kw, score in keywords: st.write(f"• {kw} ({score:.4f})") # Bar Chart progress.text("Rendering chart...") df_scores = pd.DataFrame.from_dict( sentiment_results, orient='index', columns=['score'] ) df_scores.index.name = 'Sentiment' st.bar_chart(df_scores) progress.progress(80) # Highlight Highest Sentiment max_label, max_score = max(sentiment_results.items(), key=lambda x: x[1]) st.markdown(f"**Highest Sentiment:** **{max_label}** ({max_score:.4f})") # Generate Detailed Recommendations for select sentiments progress.text("Generating detailed recommendations...") if max_label in ["Very Negative", "Negative", "Neutral"]: prompt = ( "You are a senior product quality and customer experience specialist at an e-commerce food retailer. " f"Customer Review: \"{review}\" " "Please analyze this feedback and provide **three** distinct, actionable improvement recommendations designed to reduce customer pain points. " "For each recommendation, include: " " 1. **Recommendation Title**: a concise summary of the action. " " 2. the specific issue or frustration extracted from the review. " " 3. why this action addresses the pain point and how it will improve the customer experience. " " 4. a bullet-point list of 3–5 clear steps for operations or product teams to execute. " " 5. how to measure the impact. " "Write each recommendation in at least 5–7 sentences, grounding every detail in the customer's own words. " "Avoid generic advice—focus on specifics from the review. " "Recommendations: " ) response = generation_pipeline(prompt) detailed = response[0]["generated_text"] st.markdown(detailed) else: st.info("Detailed recommendations are provided only for Neutral, Negative, or Very Negative reviews.") # Done progress.progress(100) progress.text("Done!") if __name__ == "__main__": main()