# app.py import streamlit as st from PIL import Image from io import BytesIO from huggingface_hub import InferenceApi from gtts import gTTS import tempfile # —––––––– Page config st.set_page_config(page_title="Storyteller for Kids", layout="centered") st.title("🖼️ ➡️ 📖 Interactive Storyteller") # —––––––– Inference clients (cached) @st.cache_resource def load_clients(): # read your HF token from Space secrets hf_token = st.secrets["HF_TOKEN"] # caption client: BLIP-base via HF Image-to-Text API caption_client = InferenceApi( repo_id="Salesforce/blip-image-captioning-base", task="image-to-text", token=hf_token ) # story client: DeepSeek-R1-Distill via HF Text-Generation API story_client = InferenceApi( repo_id="deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B", task="text-generation", token=hf_token ) return caption_client, story_client caption_client, story_client = load_clients() # —––––––– Main UI uploaded = st.file_uploader("Upload an image:", type=["jpg", "jpeg", "png"]) if not uploaded: st.info("Please upload an image (JPG/PNG) to begin.") else: # 1) Display the image img = Image.open(uploaded).convert("RGB") st.image(img, use_container_width=True) # 2) Caption via HF Inference API with st.spinner("🔍 Generating caption..."): buf = BytesIO() img.save(buf, format="PNG") caption_output = caption_client(data=buf.getvalue()) # handle API return formats if isinstance(caption_output, dict): cap_text = caption_output.get("generated_text", "").strip() else: cap_text = str(caption_output).strip() st.markdown(f"**Caption:** {cap_text}") # 3) Build prompt prompt = ( f"Here’s an image description: “{cap_text}”.\n\n" "Write an 80–100 word playful story for 3–10 year-old children that:\n" "1) Describes the scene and main subject.\n" "2) Explains what it’s doing and how it feels.\n" "3) Concludes with a fun, imaginative ending.\n\n" "Story:" ) # 4) Story via HF Inference API with st.spinner("✍️ Generating story..."): story_output = story_client( inputs=prompt, params={ "max_new_tokens": 120, "do_sample": True, "temperature": 0.7, "top_p": 0.9, "top_k": 50, "repetition_penalty": 1.2, "no_repeat_ngram_size": 3 } ) # API returns list of generations or a dict if isinstance(story_output, list): story = story_output[0].get("generated_text", "").strip() else: story = story_output.get("generated_text", "").strip() st.markdown("**Story:**") st.write(story) # 5) Text-to-Speech via gTTS with st.spinner("🔊 Converting to speech..."): tts = gTTS(text=story, lang="en") tmp = tempfile.NamedTemporaryFile(suffix=".mp3", delete=False) tts.write_to_fp(tmp) tmp.flush() st.audio(tmp.name, format="audio/mp3")