Spaces:
Sleeping
Sleeping
File size: 2,485 Bytes
93fc785 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 |
import streamlit as st
from PIL import Image
from io import BytesIO
from transformers import pipeline
from gtts import gTTS
import tempfile
# ββββββββ Page config and title
st.set_page_config(page_title="Storyteller for Kids", layout="centered")
st.title("πΌοΈ β‘οΈ π Interactive Storyteller")
# ββββββββ Load pipelines (cached)
@st.experimental_singleton
def load_pipelines():
# 1. Image captioning
captioner = pipeline(
"image-captioning",
model="Salesforce/blip-image-captioning-base",
device=0 if not st.session_state.get("CPU_ONLY", False) else -1
)
# 2. Story generation (you can swap to a kid-friendly fine-tuned model)
storyteller = pipeline(
"text-generation",
model="gpt2",
device=0 if not st.session_state.get("CPU_ONLY", False) else -1
)
return captioner, storyteller
captioner, storyteller = load_pipelines()
# ββββββββ Sidebar: CPU/GPU toggle (optional)
st.sidebar.write("### Settings")
st.sidebar.checkbox("Force CPU only", key="CPU_ONLY")
# ββββββββ Main UI: image upload
uploaded = st.file_uploader("Upload an image:", type=["jpg","jpeg","png"])
if uploaded:
image = Image.open(uploaded).convert("RGB")
st.image(image, caption="Your picture", use_column_width=True)
# ββββββββ 1. Caption
with st.spinner("π Looking at the image..."):
caption = captioner(image)[0]["generated_text"]
st.markdown(f"**Caption:** {caption}")
# ββββββββ 2. Story generation
prompt = (
f"Use the following description to write a playful story (50β100 words) "
f"for 3β10 year-old children:\n\nβ{caption}β\n\nStory:"
)
with st.spinner("βοΈ Writing a story..."):
output = storyteller(
prompt,
max_length= prompt.count(" ") + 100, # approx ~100 words
num_return_sequences=1,
do_sample=True,
top_p=0.9,
temperature=0.8
)
story = output[0]["generated_text"].split("Story:")[-1].strip()
st.markdown("**Story:**")
st.write(story)
# ββββββββ 3. Text-to-Speech
with st.spinner("π Converting to speech..."):
tts = gTTS(story, lang="en")
tmp = tempfile.NamedTemporaryFile(suffix=".mp3", delete=False)
tts.write_to_fp(tmp)
tmp.flush()
st.audio(tmp.name, format="audio/mp3") |