mayhug's picture
Update app.py
6aca538
raw
history blame
1.47 kB
import json
import gradio as gr
import tensorflow as tf
import tensorflow.keras as keras
from gradio import inputs, outputs
SIZE = 256
DEVICE = "/cpu:0"
with open("./tags.json", "rt", encoding="utf-8") as f:
tags = json.load(f)
with tf.device(DEVICE):
base_model = keras.applications.resnet.ResNet50(
include_top=False, weights=None, input_shape=(SIZE, SIZE, 3)
)
model = keras.Sequential(
[
base_model,
keras.layers.Conv2D(filters=len(tags), kernel_size=(1, 1), padding="same"),
keras.layers.BatchNormalization(epsilon=1.001e-5),
keras.layers.GlobalAveragePooling2D(name="avg_pool"),
keras.layers.Activation("sigmoid"),
]
)
model.load_weights("tf_model.h5")
def predict(img, hide: float):
with tf.device(DEVICE):
img = tf.image.resize_with_pad(img, SIZE, SIZE)
img = tf.image.per_image_standardization(img)
data = tf.expand_dims(img, 0)
out, *_ = model(data)
labels = {tag: float(out[i].numpy()) for i, tag in enumerate(tags)}
return {k: v for k, v in labels.items() if v >= hide}
image = inputs.Image(label="Upload your image here!")
hide_threshold = inputs.Slider(
label="Hide confidence lower than", default=0.5, maximum=1, minimum=0
)
labels = outputs.Label(label="Tags", type="confidences")
interface = gr.Interface(predict, inputs=[image, hide_threshold], outputs=[labels])
interface.launch()